Suppr超能文献

机器学习确定与单纯型和基底样犬乳腺癌相关的干性。

Machine learning determines stemness associated with simple and basal-like canine mammary carcinomas.

作者信息

Xavier Pedro L P, Marção Maycon, Simões Renan L S, Job Maria Eduarda G, de Francisco Strefezzi Ricardo, Fukumasu Heidge, Malta Tathiane M

机构信息

Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil.

Cancer Epigenomics Laboratory, Department of Clinical Analysis, Toxicology and Food Sciences, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

出版信息

Heliyon. 2024 Feb 24;10(5):e26714. doi: 10.1016/j.heliyon.2024.e26714. eCollection 2024 Mar 15.

Abstract

Simple and complex carcinomas are the most common type of malignant Canine Mammary Tumors (CMTs), with simple carcinomas exhibiting aggressive behavior and poorer prognostic. Stemness is an ability associated with cancer initiation, malignancy, and therapeutic resistance, but is still few elucidated in canine mammary tumor subtypes. Here, we first validated, using CMT samples, a previously published canine one-class logistic regression machine learning algorithm (OCLR) to predict stemness (mRNAsi) in canine cancer cells. Then, using the canine mRNAsi, we observed that simple carcinomas exhibit higher stemness than complex carcinomas and other histological subtypes. Also, we confirmed that stemness is higher and associated with basal-like CMTs and with NMF2 metagene signature, a tumor-specific DNA-repair metagene signature. Using correlation analysis, we selected the top 50 genes correlated with higher stemness, and the top 50 genes correlated with lower stemness and further performed a gene set enrichment analysis to observe the biological processes enriched for these genes. Finally, we suggested two promise stemness-associated targets in CMTs, and , especially in simple carcinomas. Thus, our work elucidates stemness as a potential mechanism behind the aggressiveness and development of canine mammary tumors, especially in simple carcinomas, describing evidence of a promising strategy to target this disease.

摘要

单纯性和复杂性癌是犬乳腺肿瘤(CMT)最常见的恶性类型,其中单纯性癌表现出侵袭性的行为且预后较差。干性是一种与癌症起始、恶性程度和治疗抗性相关的能力,但在犬乳腺肿瘤亚型中仍鲜有阐明。在此,我们首先使用CMT样本验证了一种先前发表的犬类单类逻辑回归机器学习算法(OCLR),以预测犬癌细胞中的干性(mRNAsi)。然后,利用犬类mRNAsi,我们观察到单纯性癌比复杂性癌及其他组织学亚型表现出更高的干性。此外,我们证实干性更高,且与基底样CMT以及与NMF2元基因特征(一种肿瘤特异性DNA修复元基因特征)相关。通过相关性分析,我们选择了与更高干性相关的前50个基因以及与更低干性相关的前50个基因,并进一步进行了基因集富集分析,以观察这些基因所富集的生物学过程。最后,我们提出了CMT中两个有前景的干性相关靶点,特别是在单纯性癌中。因此,我们的工作阐明了干性是犬乳腺肿瘤,尤其是单纯性癌侵袭性和发展背后的一种潜在机制,描述了一种有前景的针对该疾病策略的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e8/10909659/0e85ad3ad26a/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验