Graim Kiley, Gorenshteyn Dmitriy, Robinson David G, Carriero Nicholas J, Cahill James A, Chakrabarti Rumela, Goldschmidt Michael H, Durham Amy C, Funk Julien, Storey John D, Kristensen Vessela N, Theesfeld Chandra L, Sorenmo Karin U, Troyanskaya Olga G
Flatiron Institute, Simons Foundation, New York, New York 10010, USA.
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.
Genome Res. 2021 Feb;31(2):337-347. doi: 10.1101/gr.256388.119. Epub 2020 Dec 23.
Understanding the changes in diverse molecular pathways underlying the development of breast tumors is critical for improving diagnosis, treatment, and drug development. Here, we used RNA-profiling of canine mammary tumors (CMTs) coupled with a robust analysis framework to model molecular changes in human breast cancer. Our study leveraged a key advantage of the canine model, the frequent presence of multiple naturally occurring tumors at diagnosis, thus providing samples spanning normal tissue and benign and malignant tumors from each patient. We showed human breast cancer signals, at both expression and mutation level, are evident in CMTs. Profiling multiple tumors per patient enabled by the CMT model allowed us to resolve statistically robust transcription patterns and biological pathways specific to malignant tumors versus those arising in benign tumors or shared with normal tissues. We showed that multiple histological samples per patient is necessary to effectively capture these progression-related signatures, and that carcinoma-specific signatures are predictive of survival for human breast cancer patients. To catalyze and support similar analyses and use of the CMT model by other biomedical researchers, we provide FREYA, a robust data processing pipeline and statistical analyses framework.
了解乳腺肿瘤发生过程中多种分子途径的变化对于改善诊断、治疗和药物开发至关重要。在这里,我们对犬乳腺肿瘤(CMT)进行RNA分析,并结合一个强大的分析框架来模拟人类乳腺癌的分子变化。我们的研究利用了犬模型的一个关键优势,即在诊断时经常出现多个自然发生的肿瘤,从而提供了来自每个患者的正常组织、良性和恶性肿瘤的样本。我们发现,在CMT中,人类乳腺癌信号在表达和突变水平上都很明显。CMT模型允许对每个患者的多个肿瘤进行分析,这使我们能够解析出恶性肿瘤与良性肿瘤或正常组织中出现的肿瘤相比具有统计学意义的稳健转录模式和生物学途径。我们表明,每个患者需要多个组织学样本才能有效地捕捉这些与进展相关的特征,并且癌特异性特征可预测人类乳腺癌患者的生存情况。为了促进和支持其他生物医学研究人员对CMT模型进行类似的分析和使用,我们提供了FREYA,这是一个强大的数据处理管道和统计分析框架。