Liu Yajun, Zhang Zenghui, Yue Jiang, Guo Weiwei
Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiao Tong University, China.
Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
Heliyon. 2024 Feb 28;10(5):e26775. doi: 10.1016/j.heliyon.2024.e26775. eCollection 2024 Mar 15.
Existing approaches to 3D medical image segmentation can be generally categorized into convolution-based or transformer-based methods. While convolutional neural networks (CNNs) demonstrate proficiency in extracting local features, they encounter challenges in capturing global representations. In contrast, the consecutive self-attention modules present in vision transformers excel at capturing long-range dependencies and achieving an expanded receptive field. In this paper, we propose a novel approach, termed , for 3D medical image segmentation. Our method combines the strengths of dual attention (patial and hannel ttention) and Conv to enhance representation learning for 3D medical images. In particular, we propose a novel self-attention mechanism crafted to encompass spatial and channel relationships throughout the entire feature dimension. To further extract multiscale features, we introduce a depth-wise convolution block inspired by ConvNeXt after the dual attention block. Extensive evaluations on three benchmark datasets, namely Synapse, BraTS, and ACDC, demonstrate the effectiveness of our proposed method in terms of accuracy. Our SCANeXt model achieves a state-of-the-art result with a Dice Similarity Score of 95.18% on the ACDC dataset, significantly outperforming current methods.
现有的三维医学图像分割方法通常可分为基于卷积的方法或基于Transformer的方法。虽然卷积神经网络(CNN)在提取局部特征方面表现出色,但它们在捕捉全局表示方面面临挑战。相比之下,视觉Transformer中存在的连续自注意力模块擅长捕捉长距离依赖关系并实现扩展的感受野。在本文中,我们提出了一种用于三维医学图像分割的新颖方法,称为 。我们的方法结合了双重注意力(空间和通道注意力)和卷积的优势,以增强三维医学图像的表示学习。具体而言,我们提出了一种新颖的自注意力机制,旨在在整个特征维度上涵盖空间和通道关系。为了进一步提取多尺度特征,我们在双重注意力块之后引入了一个受ConvNeXt启发的深度卷积块。在三个基准数据集,即Synapse、BraTS和ACDC上进行的广泛评估证明了我们提出的方法在准确性方面的有效性。我们的SCANeXt模型在ACDC数据集上以95.18%的骰子相似性得分取得了当前最优的结果,显著优于现有方法。