Suppr超能文献

ASF-LKUNet:用于多器官分割的具有大核的邻域尺度融合 U-Net。

ASF-LKUNet: Adjacent-scale fusion U-Net with large kernel for multi-organ segmentation.

机构信息

School of Artificial Intelligence, Xidian University, China.

School of Artificial Intelligence, Xidian University, China.

出版信息

Comput Biol Med. 2024 Oct;181:109050. doi: 10.1016/j.compbiomed.2024.109050. Epub 2024 Aug 27.

Abstract

In the multi-organ segmentation task of medical images, there are some challenging issues such as the complex background, blurred boundaries between organs, and the larger scale difference in volume. Due to the local receptive fields of conventional convolution operations, it is difficult to obtain desirable results by directly using them for multi-organ segmentation. While Transformer-based models have global information, there is a significant dependency on hardware because of the high computational demands. Meanwhile, the depthwise convolution with large kernel can capture global information and have less computational requirements. Therefore, to leverage the large receptive field and reduce model complexity, we propose a novel CNN-based approach, namely adjacent-scale fusion U-Net with large kernel (ASF-LKUNet) for multi-organ segmentation. We utilize a u-shaped encoder-decoder as the base architecture of ASF-LKUNet. In the encoder path, we design the large kernel residual block, which combines the large and small kernels and can simultaneously capture the global and local features. Furthermore, for the first time, we propose an adjacent-scale fusion and large kernel GRN channel attention that incorporates the low-level details with the high-level semantics by the adjacent-scale feature and then adaptively focuses on the more global and meaningful channel information. Extensive experiments and interpretability analysis are made on the Synapse multi-organ dataset (Synapse) and the ACDC cardiac multi-structure dataset (ACDC). Our proposed ASF-LKUNet achieves 88.41% and 89.45% DSC scores on the Synapse and ACDC datasets, respectively, with 17.96M parameters and 29.14 GFLOPs. These results show that our method achieves superior performance with favorable lower complexity against ten competing approaches.ASF-LKUNet is superior to various competing methods and has less model complexity. Code and the trained models have been released on GitHub.

摘要

在医学图像的多器官分割任务中,存在一些具有挑战性的问题,例如复杂的背景、器官之间边界模糊以及体积差异较大。由于传统卷积操作的局部感受野,直接使用它们进行多器官分割很难获得理想的结果。而基于 Transformer 的模型具有全局信息,但由于计算需求高,对硬件有很大的依赖性。同时,大核的深度卷积可以捕获全局信息,且计算要求较低。因此,为了利用大感受野并降低模型复杂度,我们提出了一种新的基于 CNN 的方法,即具有大核的相邻尺度融合 U-Net(ASF-LKUNet),用于多器官分割。我们使用 U 形编码器-解码器作为 ASF-LKUNet 的基础架构。在编码器路径中,我们设计了大核残差块,它结合了大核和小核,可以同时捕获全局和局部特征。此外,我们首次提出了相邻尺度融合和大核 GRN 通道注意力机制,通过相邻尺度特征融合低层次细节和高层次语义,然后自适应地关注更全局和更有意义的通道信息。我们在 Synapse 多器官数据集(Synapse)和 ACDC 心脏多结构数据集(ACDC)上进行了广泛的实验和可解释性分析。我们提出的 ASF-LKUNet 在 Synapse 和 ACDC 数据集上分别获得了 88.41%和 89.45%的 DSC 评分,参数量为 17.96M,浮点运算数为 29.14GFLOPs。这些结果表明,与十种竞争方法相比,我们的方法具有更好的性能,且复杂度更低。代码和训练好的模型已在 GitHub 上发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验