IEEE Trans Med Imaging. 2022 Oct;41(10):2925-2940. doi: 10.1109/TMI.2022.3174827. Epub 2022 Sep 30.
An increased interest in longitudinal neurodevelopment during the first few years after birth has emerged in recent years. Noninvasive magnetic resonance imaging (MRI) can provide crucial information about the development of brain structures in the early months of life. Despite the success of MRI collections and analysis for adults, it remains a challenge for researchers to collect high-quality multimodal MRIs from developing infant brains because of their irregular sleep pattern, limited attention, inability to follow instructions to stay still during scanning. In addition, there are limited analytic approaches available. These challenges often lead to a significant reduction of usable MRI scans and pose a problem for modeling neurodevelopmental trajectories. Researchers have explored solving this problem by synthesizing realistic MRIs to replace corrupted ones. Among synthesis methods, the convolutional neural network-based (CNN-based) generative adversarial networks (GANs) have demonstrated promising performance. In this study, we introduced a novel 3D MRI synthesis framework- pyramid transformer network (PTNet3D)- which relies on attention mechanisms through transformer and performer layers. We conducted extensive experiments on high-resolution Developing Human Connectome Project (dHCP) and longitudinal Baby Connectome Project (BCP) datasets. Compared with CNN-based GANs, PTNet3D consistently shows superior synthesis accuracy and superior generalization on two independent, large-scale infant brain MRI datasets. Notably, we demonstrate that PTNet3D synthesized more realistic scans than CNN-based models when the input is from multi-age subjects. Potential applications of PTNet3D include synthesizing corrupted or missing images. By replacing corrupted scans with synthesized ones, we observed significant improvement in infant whole brain segmentation.
近年来,人们对出生后最初几年的纵向神经发育产生了浓厚的兴趣。非侵入性磁共振成像(MRI)可以提供关于生命早期大脑结构发育的关键信息。尽管 MRI 采集和分析在成人中取得了成功,但由于婴儿不规则的睡眠模式、注意力有限、无法在扫描过程中按照指令保持静止,研究人员仍然难以从发育中的婴儿大脑中采集高质量的多模态 MRI。此外,可用的分析方法也有限。这些挑战通常导致可用于分析的 MRI 扫描数量显著减少,给建模神经发育轨迹带来了问题。研究人员已经探索通过合成逼真的 MRI 来替代损坏的 MRI 来解决这个问题。在合成方法中,基于卷积神经网络(CNN 基)的生成对抗网络(GAN)表现出了有希望的性能。在这项研究中,我们引入了一种新的 3D MRI 合成框架——金字塔变换网络(PTNet3D)——它通过变压器和表演者层依赖于注意力机制。我们在高分辨率的发育人类连接组计划(dHCP)和纵向婴儿连接组计划(BCP)数据集上进行了广泛的实验。与基于 CNN 的 GAN 相比,PTNet3D 在两个独立的大型婴儿脑 MRI 数据集上始终表现出更高的合成精度和更好的泛化能力。值得注意的是,我们证明了当输入来自多年龄受试者时,PTNet3D 比基于 CNN 的模型合成的扫描更逼真。PTNet3D 的潜在应用包括合成损坏或缺失的图像。通过用合成的扫描替换损坏的扫描,我们观察到婴儿全脑分割的显著改善。