Suppr超能文献

基于YOLOv8s的足球裁判手势识别算法

Football referee gesture recognition algorithm based on YOLOv8s.

作者信息

Yang Zhiyuan, Shen Yuanyuan, Shen Yanfei

机构信息

School of Sport Engineering, Beijing Sport University, Beijing, China.

出版信息

Front Comput Neurosci. 2024 Feb 19;18:1341234. doi: 10.3389/fncom.2024.1341234. eCollection 2024.

Abstract

Gesture serves as a crucial means of communication between individuals and between humans and machines. In football matches, referees communicate judgment information through gestures. Due to the diversity and complexity of referees' gestures and interference factors, such as the players, spectators, and camera angles, automated football referee gesture recognition (FRGR) has become a challenging task. The existing methods based on visual sensors often cannot provide a satisfactory performance. To tackle FRGR problems, we develop a deep learning model based on YOLOv8s. Three improving and optimizing strategies are integrated to solve these problems. First, a Global Attention Mechanism (GAM) is employed to direct the model's attention to the hand gestures and minimize the background interference. Second, a P2 detection head structure is integrated into the YOLOv8s model to enhance the accuracy of detecting smaller objects at a distance. Third, a new loss function based on the Minimum Point Distance Intersection over Union (MPDIoU) is used to effectively utilize anchor boxes with the same shape, but different sizes. Finally, experiments are executed on a dataset of six hand gestures among 1,200 images. The proposed method was compared with seven different existing models and 10 different optimization models. The proposed method achieves a precision rate of 89.3%, a recall rate of 88.9%, a mAP@0.5 rate of 89.9%, and a mAP@0.5:0.95 rate of 77.3%. These rates are approximately 1.4%, 2.0%, 1.1%, and 5.4% better than those of the newest YOLOv8s, respectively. The proposed method has right prospect in automated gesture recognition for football matches.

摘要

手势是人与人之间以及人与机器之间交流的重要方式。在足球比赛中,裁判通过手势传达判罚信息。由于裁判手势的多样性和复杂性以及诸如球员、观众和摄像机角度等干扰因素,足球裁判手势自动识别(FRGR)已成为一项具有挑战性的任务。现有的基于视觉传感器的方法往往无法提供令人满意的性能。为了解决FRGR问题,我们开发了一种基于YOLOv8s的深度学习模型。集成了三种改进和优化策略来解决这些问题。首先,采用全局注意力机制(GAM)引导模型关注手势并最小化背景干扰。其次,将P2检测头结构集成到YOLOv8s模型中,以提高远距离检测较小物体的准确性。第三,使用基于最小点距离交并比(MPDIoU)的新损失函数来有效利用形状相同但大小不同的锚框。最后,在1200张图像中的六种手势数据集上进行实验。将所提出的方法与七种不同的现有模型和十种不同的优化模型进行比较。所提出的方法实现了89.3%的精确率、88.9%的召回率、89.9%的mAP@0.5率和77.3%的mAP@0.5:0.95率。这些比率分别比最新的YOLOv8s高出约1.4%、2.0%、1.1%和5.4%。所提出的方法在足球比赛自动手势识别方面具有良好的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75cd/10910025/c2218b60eaaa/fncom-18-1341234-g001.jpg

相似文献

1
Football referee gesture recognition algorithm based on YOLOv8s.
Front Comput Neurosci. 2024 Feb 19;18:1341234. doi: 10.3389/fncom.2024.1341234. eCollection 2024.
2
AFM-YOLOv8s: An Accurate, Fast, and Highly Robust Model for Detection of Sporangia of with Various Morphological Variants.
Plant Phenomics. 2024 Sep 11;6:0246. doi: 10.34133/plantphenomics.0246. eCollection 2024.
3
Identification of cotton pest and disease based on CFNet- VoV-GCSP -LSKNet-YOLOv8s: a new era of precision agriculture.
Front Plant Sci. 2024 Feb 20;15:1348402. doi: 10.3389/fpls.2024.1348402. eCollection 2024.
4
5
A Hierarchical Hand Gesture Recognition Framework for Sports Referee Training-Based EMG and Accelerometer Sensors.
IEEE Trans Cybern. 2022 May;52(5):3172-3183. doi: 10.1109/TCYB.2020.3007173. Epub 2022 May 19.
7
Tea-YOLOv8s: A Tea Bud Detection Model Based on Deep Learning and Computer Vision.
Sensors (Basel). 2023 Jul 21;23(14):6576. doi: 10.3390/s23146576.
8
Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue.
Sensors (Basel). 2021 Mar 20;21(6):2180. doi: 10.3390/s21062180.

引用本文的文献

1
Comparative analysis of automated foul detection in football using deep learning architectures.
Sci Rep. 2025 Apr 24;15(1):14236. doi: 10.1038/s41598-025-96945-0.

本文引用的文献

1
Video assistant referees (VAR): The impact of technology on decision making in association football referees.
J Sports Sci. 2021 Jan;39(2):147-153. doi: 10.1080/02640414.2020.1809163. Epub 2020 Aug 14.
2
A Hierarchical Hand Gesture Recognition Framework for Sports Referee Training-Based EMG and Accelerometer Sensors.
IEEE Trans Cybern. 2022 May;52(5):3172-3183. doi: 10.1109/TCYB.2020.3007173. Epub 2022 May 19.
3
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
4
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
IEEE Trans Pattern Anal Mach Intell. 2015 Sep;37(9):1904-16. doi: 10.1109/TPAMI.2015.2389824.
5
Referee bias contributes to home advantage in English Premiership football.
J Sports Sci. 2007 Sep;25(11):1185-94. doi: 10.1080/02640410601038576.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验