Suppr超能文献

实时人体检测与手势识别在机载无人机救援中的应用。

Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue.

机构信息

Department of Networked Systems and Services, Budapest University of Technology and Economics, BME Informatika épület Magyar tudósok körútja 2, 1117 Budapest, Hungary.

Machine Perception Research Laboratory of Institute for Computer Science and Control (SZTAKI), Kende u. 13-17, 1111 Budapest, Hungary.

出版信息

Sensors (Basel). 2021 Mar 20;21(6):2180. doi: 10.3390/s21062180.

Abstract

Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose.

摘要

无人机(UAV)在众多技术和科学领域发挥着重要作用,特别是在野外救援中。本文致力于实时 UAV 人体检测和识别身体和手部救援手势。我们使用身体特征解决方案来建立生物识别通信,例如用于人体检测的 yolo3-tiny。当检测到有人存在时,系统将进入手势识别阶段,用户和无人机可以进行简短而有效的通信,避免了语音通信的缺点。通过无人机机载摄像头创建了一个包含十种身体救援手势(即踢、打、蹲、站、注意、取消、走、坐、方向和打电话)的数据集。两个最重要的手势是新颖的动态注意和取消,分别代表设置和重置功能。当识别到人体的救援手势为注意时,无人机将逐渐靠近用户,并以更大的分辨率进行手部手势识别。通过使用深度学习方法,在身体手势数据集的测试数据中,该系统达到了 99.80%的准确率,在手部手势数据集的测试数据中达到了 94.71%的准确率。在实时 UAV 摄像机上进行的实验证实了我们的解决方案可以达到我们预期的 UAV 救援目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dbc/8003912/2b99624adfa1/sensors-21-02180-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验