Suppr超能文献

使用梯度提升机预测医疗保健设施对气候的影响。

Predicting the Climate Impact of Healthcare Facilities Using Gradient Boosting Machines.

作者信息

Yin Hao, Sharma Bhavna, Hu Howard, Liu Fei, Kaur Mehak, Cohen Gary, McConnell Rob, Eckel Sandrah P

机构信息

Department of Economics, University of Southern California, Los Angeles, California, USA, 90089.

School of Architecture, University of Southern California, Los Angeles, California, USA, 90089.

出版信息

Clean Environ Syst. 2024 Mar;12. doi: 10.1016/j.cesys.2023.100155. Epub 2023 Nov 26.

Abstract

Health care accounts for 9-10% of greenhouse gas (GHG) emissions in the United States. Strategies for monitoring these emissions at the hospital level are needed to decarbonize the sector. However, data collection to estimate emissions is challenging, especially for smaller hospitals. We explored the potential of gradient boosting machines (GBM) to impute missing data on resource consumption in the 2020 survey of a consortium of 283 hospitals participating in Practice Greenhealth. GBM imputed missing values for selected variables in order to predict electricity use and beef consumption (R=0.82) and anesthetic gas desflurane use (R=0.51), using administrative data readily available for most hospitals. After imputing missing consumption data, estimated GHG emissions associated with these three examples totaled over 3 million metric tons of CO equivalent emissions (MTCOe). Specifically, electricity consumption had the largest total carbon footprint (2.4 MTCOe), followed by beef (0.6 million MTCOe) and desflurane consumption (0.03 million MTCOe) across the 283 hospitals. The approach should be applicable to other sources of hospital GHGs in order to estimate total emissions of individual hospitals and to refine survey questions to help develop better intervention strategies.

摘要

在美国,医疗保健占温室气体(GHG)排放量的9%-10%。为实现该行业的脱碳,需要制定在医院层面监测这些排放的策略。然而,收集估算排放量的数据具有挑战性,尤其是对于规模较小的医院。在对参与绿色医疗实践的283家医院组成的联盟进行的2020年调查中,我们探索了梯度提升机(GBM)在估算资源消耗缺失数据方面的潜力。GBM通过估算选定变量的缺失值,利用大多数医院均可轻松获取的管理数据,来预测电力使用量和牛肉消耗量(R=0.82)以及麻醉气体地氟烷的使用量(R=0.51)。在估算缺失的消耗数据后,与这三个例子相关的估计温室气体排放量总计超过300万公吨二氧化碳当量排放量(MTCOe)。具体而言,在这283家医院中,电力消耗的碳足迹总量最大(240万MTCOe),其次是牛肉(60万MTCOe)和地氟烷消耗(3万MTCOe)。该方法应适用于医院温室气体的其他来源,以便估算各医院的总排放量,并完善调查问题,以帮助制定更好的干预策略。

相似文献

4
Greenhouse gas emissions from U.S. institutions of higher education.美国高等教育机构的温室气体排放。
J Air Waste Manag Assoc. 2010 May;60(5):568-73. doi: 10.3155/1047-3289.60.5.568.
7
Life cycle greenhouse gas emissions of anesthetic drugs.麻醉药物的生命周期温室气体排放。
Anesth Analg. 2012 May;114(5):1086-90. doi: 10.1213/ANE.0b013e31824f6940. Epub 2012 Apr 4.

引用本文的文献

本文引用的文献

1
Mandatory Reporting of Emissions to Achieve Net-Zero Health Care.强制报告排放以实现医疗保健净零排放。
N Engl J Med. 2022 Dec 29;387(26):2469-2476. doi: 10.1056/NEJMsb2210022. Epub 2022 Dec 14.
10
Environmental sustainability in anaesthesia and critical care.麻醉与危重病医学中的环境可持续性。
Br J Anaesth. 2020 Nov;125(5):680-692. doi: 10.1016/j.bja.2020.06.055. Epub 2020 Aug 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验