Suppr超能文献

利用基于机器学习的全球非靶向稳定同位素追踪代谢组学鉴定十字花科蔬菜消费的生物标志物。

Identification of biological signatures of cruciferous vegetable consumption utilizing machine learning-based global untargeted stable isotope traced metabolomics.

作者信息

Bouranis John A, Ren Yijie, Beaver Laura M, Choi Jaewoo, Wong Carmen P, He Lily, Traber Maret G, Kelly Jennifer, Booth Sarah L, Stevens Jan F, Fern Xiaoli Z, Ho Emily

机构信息

School of Nutrition and Public Health, Oregon State University, Corvallis, OR, United States.

Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.

出版信息

Front Nutr. 2024 Jul 3;11:1390223. doi: 10.3389/fnut.2024.1390223. eCollection 2024.

Abstract

In recent years there has been increased interest in identifying biological signatures of food consumption for use as biomarkers. Traditional metabolomics-based biomarker discovery approaches rely on multivariate statistics which cannot differentiate between host- and food-derived compounds, thus novel approaches to biomarker discovery are required to advance the field. To this aim, we have developed a new method that combines global untargeted stable isotope traced metabolomics and a machine learning approach to identify biological signatures of cruciferous vegetable consumption. Participants consumed a single serving of broccoli ( = 16), alfalfa sprouts ( = 16) or collard greens ( = 26) which contained either control unlabeled metabolites, or that were grown in the presence of deuterium-labeled water to intrinsically label metabolites. Mass spectrometry analysis indicated 133 metabolites in broccoli sprouts and 139 metabolites in the alfalfa sprouts were labeled with deuterium isotopes. Urine and plasma were collected and analyzed using untargeted metabolomics on an AB SCIEX TripleTOF 5,600 mass spectrometer. Global untargeted stable isotope tracing was completed using openly available software and a novel random forest machine learning based classifier. Among participants who consumed labeled broccoli sprouts or collard greens, 13 deuterium-incorporated metabolomic features were detected in urine representing 8 urine metabolites. Plasma was analyzed among collard green consumers and 11 labeled features were detected representing 5 plasma metabolites. These deuterium-labeled metabolites represent potential biological signatures of cruciferous vegetables consumption. Isoleucine, indole-3-acetic acid-N-O-glucuronide, dihydrosinapic acid were annotated as labeled compounds but other labeled metabolites could not be annotated. This work presents a novel framework for identifying biological signatures of food consumption for biomarker discovery. Additionally, this work presents novel applications of metabolomics and machine learning in the life sciences.

摘要

近年来,人们对识别食物消费的生物标志物越来越感兴趣。传统的基于代谢组学的生物标志物发现方法依赖于多变量统计,而这种方法无法区分宿主来源和食物来源的化合物,因此需要新的生物标志物发现方法来推动该领域的发展。为此,我们开发了一种新方法,该方法结合了全局非靶向稳定同位素示踪代谢组学和机器学习方法,以识别十字花科蔬菜消费的生物标志物。参与者食用了一份西兰花(n = 16)、苜蓿芽(n = 16)或羽衣甘蓝(n = 26),这些蔬菜要么含有未标记的对照代谢物,要么是在氘标记水的存在下生长以对代谢物进行内在标记。质谱分析表明,西兰花芽中有133种代谢物和苜蓿芽中有139种代谢物被氘同位素标记。收集尿液和血浆,并使用AB SCIEX TripleTOF 5,600质谱仪进行非靶向代谢组学分析。使用公开可用的软件和基于随机森林机器学习的新型分类器完成全局非靶向稳定同位素示踪。在食用标记西兰花芽或羽衣甘蓝的参与者中,在尿液中检测到13种含氘的代谢组学特征,代表8种尿液代谢物。对食用羽衣甘蓝的参与者的血浆进行了分析,检测到11种标记特征,代表5种血浆代谢物。这些氘标记的代谢物代表了十字花科蔬菜消费的潜在生物标志物。异亮氨酸、吲哚 - 3 - 乙酸 - N - O - 葡糖醛酸、二氢芥子酸被注释为标记化合物,但其他标记代谢物无法注释。这项工作为识别用于生物标志物发现的食物消费生物标志物提供了一个新框架。此外,这项工作展示了代谢组学和机器学习在生命科学中的新应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验