文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的多模型预测手术后透明细胞肾细胞癌患者无复发生存状态:一项多中心队列研究。

Deep learning-based multi-model prediction for disease-free survival status of patients with clear cell renal cell carcinoma after surgery: a multicenter cohort study.

机构信息

Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine.

Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine.

出版信息

Int J Surg. 2024 May 1;110(5):2970-2977. doi: 10.1097/JS9.0000000000001222.


DOI:10.1097/JS9.0000000000001222
PMID:38445478
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11093464/
Abstract

BACKGROUND: Although separate analysis of individual factor can somewhat improve the prognostic performance, integration of multimodal information into a single signature is necessary to stratify patients with clear cell renal cell carcinoma (ccRCC) for adjuvant therapy after surgery. METHODS: A total of 414 patients with whole slide images, computed tomography images, and clinical data from three patient cohorts were retrospectively analyzed. The authors performed deep learning and machine learning algorithm to construct three single-modality prediction models for disease-free survival of ccRCC based on whole slide images, cell segmentation, and computed tomography images, respectively. A multimodel prediction signature (MMPS) for disease-free survival were further developed by combining three single-modality prediction models and tumor stage/grade system. Prognostic performance of the prognostic model was also verified in two independent validation cohorts. RESULTS: Single-modality prediction models performed well in predicting the disease-free survival status of ccRCC. The MMPS achieved higher area under the curve value of 0.742, 0.917, and 0.900 in three independent patient cohorts, respectively. MMPS could distinguish patients with worse disease-free survival, with HR of 12.90 (95% CI: 2.443-68.120, P <0.0001), 11.10 (95% CI: 5.467-22.520, P <0.0001), and 8.27 (95% CI: 1.482-46.130, P <0.0001) in three different patient cohorts. In addition, MMPS outperformed single-modality prediction models and current clinical prognostic factors, which could also provide complements to current risk stratification for adjuvant therapy of ccRCC. CONCLUSION: Our novel multimodel prediction analysis for disease-free survival exhibited significant improvements in prognostic prediction for patients with ccRCC. After further validation in multiple centers and regions, the multimodal system could be a potential practical tool for clinicians in the treatment for ccRCC patients.

摘要

背景:尽管单独分析各个因素在一定程度上可以提高预后性能,但将多模态信息整合到单个签名中对于为手术后的透明细胞肾细胞癌(ccRCC)患者分层进行辅助治疗是必要的。

方法:对来自三个患者队列的 414 名具有全幻灯片图像、计算机断层扫描图像和临床数据的患者进行了回顾性分析。作者分别基于全幻灯片图像、细胞分割和计算机断层扫描图像,使用深度学习和机器学习算法构建了三个用于 ccRCC 无病生存的单一模式预测模型。通过将三个单一模式预测模型与肿瘤分期/分级系统相结合,进一步开发了一个多模式预测特征(MMPS)用于无病生存。还在两个独立的验证队列中验证了该预后模型的预后性能。

结果:单一模式预测模型在预测 ccRCC 的无病生存状态方面表现良好。MMPS 在三个独立的患者队列中分别获得了 0.742、0.917 和 0.900 的较高曲线下面积值。MMPS 能够区分无病生存较差的患者,其 HR 分别为 12.90(95%CI:2.443-68.120,P<0.0001)、11.10(95%CI:5.467-22.520,P<0.0001)和 8.27(95%CI:1.482-46.130,P<0.0001)。此外,MMPS 优于单一模式预测模型和当前临床预后因素,也可为 ccRCC 的辅助治疗提供补充。

结论:我们新的无病生存多模式预测分析在 ccRCC 患者的预后预测方面表现出显著的改善。在经过多个中心和地区的进一步验证后,该多模态系统可能成为临床医生治疗 ccRCC 患者的一种潜在实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7981/11093464/79296f9d2989/js9-110-2970-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7981/11093464/01647114740a/js9-110-2970-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7981/11093464/8c7a8e1db28b/js9-110-2970-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7981/11093464/79296f9d2989/js9-110-2970-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7981/11093464/01647114740a/js9-110-2970-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7981/11093464/8c7a8e1db28b/js9-110-2970-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7981/11093464/79296f9d2989/js9-110-2970-g003.jpg

相似文献

[1]
Deep learning-based multi-model prediction for disease-free survival status of patients with clear cell renal cell carcinoma after surgery: a multicenter cohort study.

Int J Surg. 2024-5-1

[2]
Artificial intelligence-based multimodal prediction for nuclear grading status and prognosis of clear cell renal cell carcinoma: a multicenter cohort study.

Int J Surg. 2025-6-1

[3]
Three-dimensional deep learning model complements existing models for preoperative disease-free survival prediction in localized clear cell renal cell carcinoma: a multicenter retrospective cohort study.

Int J Surg. 2024-11-1

[4]
A prognostic microRNA-based signature for localized clear cell renal cell carcinoma: the Bio-miR study.

Br J Cancer. 2025-5-7

[5]
Predicting Recurrence After Surgical Resection for High-Risk Localized Renal Cell Carcinoma: A Radiomics Clinical Integration Approach.

J Urol. 2025-9

[6]
Computed tomography-based radiomics predicts prognostic and treatment-related levels of immune infiltration in the immune microenvironment of clear cell renal cell carcinoma.

BMC Med Imaging. 2025-7-1

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
Preoperative prediction of renal fibrous capsule invasion in clear cell renal cell carcinoma using CT-based radiomics model.

Br J Radiol. 2024-9-1

[9]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[10]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

引用本文的文献

[1]
Long-term survival with multidisciplinary treatment in metastatic sarcomatoid renal cell carcinoma: a case report and literature review.

Front Oncol. 2025-8-18

[2]
A prognostic model integrating radiomics and deep learning based on CT for survival prediction in laryngeal squamous cell carcinoma.

Sci Rep. 2025-8-16

[3]
Multi-modal and Multi-view Cervical Spondylosis Imaging Dataset.

Sci Data. 2025-7-1

[4]
Clinicopathological-based nomogram prediction and molecular characterization of postoperative recurrence in clinical T1 clear cell renal cell carcinoma.

BMC Surg. 2025-6-5

[5]
Arginine methylation modulates tumor fate and prognosis in clear cell renal cell carcinoma.

Discov Oncol. 2025-5-13

[6]
The interpretable CT-based vision transformer model for preoperative prediction of clear cell renal cell carcinoma SSIGN score and outcome.

Insights Imaging. 2025-5-9

[7]
Prognostic factors and nomogram development for survival in renal cell carcinoma patients with multiple primary cancers: a retrospective study.

Transl Androl Urol. 2025-3-30

本文引用的文献

[1]
Perspective of a Pathologist on Benchmark Strategies for Artificial Intelligence Development in Organ Transplantation.

Crit Rev Oncog. 2023

[2]
Deep radiomics-based fusion model for prediction of bevacizumab treatment response and outcome in patients with colorectal cancer liver metastases: a multicentre cohort study.

EClinicalMedicine. 2023-10-12

[3]
Pretreatment radiomic biomarker for immunotherapy responder prediction in stage IB-IV NSCLC (LCDigital-IO Study): a multicenter retrospective study.

J Immunother Cancer. 2023-10

[4]
Validity of a multiphase CT-based radiomics model in predicting the Leibovich risk groups for localized clear cell renal cell carcinoma: an exploratory study.

Insights Imaging. 2023-10-10

[5]
Extending the landscape of omics technologies by pathomics.

NPJ Syst Biol Appl. 2023-8-7

[6]
Multimodal recurrence scoring system for prediction of clear cell renal cell carcinoma outcome: a discovery and validation study.

Lancet Digit Health. 2023-8

[7]
A CT-based deep learning radiomics nomogram outperforms the existing prognostic models for outcome prediction in clear cell renal cell carcinoma: a multicenter study.

Eur Radiol. 2023-12

[8]
Learning from deep learning and pathomics.

Kidney Int. 2023-12

[9]
Radiomics and artificial intelligence for precision medicine in lung cancer treatment.

Semin Cancer Biol. 2023-8

[10]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索