Suppr超能文献

基于临床病理的列线图预测及临床T1期透明细胞肾细胞癌术后复发的分子特征分析

Clinicopathological-based nomogram prediction and molecular characterization of postoperative recurrence in clinical T1 clear cell renal cell carcinoma.

作者信息

Yang Zhao, Wang Keruo, Chang Haowen, Li Songyang, Zhang Hongli, Lu Yilei, Zhang Jiaming, Liu Kangkang, Niu Yuanjie, Shang Zhiqun

机构信息

Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.

Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.

出版信息

BMC Surg. 2025 Jun 5;25(1):247. doi: 10.1186/s12893-025-02991-w.

Abstract

OBJECTIVE

This study aimed to develop and validate a nomogram for predicting recurrence-free survival (RFS) in clinical T1 (cT1) clear cell renal cell carcinoma (ccRCC) following nephrectomy. Additionally, it explored transcriptional profiles across distinct risk groups.

METHODS

Data from 2,492 cT1 ccRCC patients who underwent nephrectomy at The Second Hospital of Tianjin Medical University were analyzed. Univariate and multivariate Cox proportional hazards regression analyses were conducted to identify independent predictors of RFS. A nomogram was constructed and validated using a training cohort (n = 1744) and an internal validation cohort (n = 748). Model performance was evaluated using the concordance index (C-index), calibration plots, receiver operating characteristic (ROC) curves, decision curve analysis (DCA), and Kaplan-Meier survival curves. An external validation was performed using The Cancer Genome Atlas (TCGA) ccRCC dataset. Furthermore, Cox-Lasso regression analysis was applied to identify risk-associated genes in the high-risk group.

RESULTS

Age, surgical margin status, Fuhrman grade, and pT3a upstage were identified as independent predictors. The areas under the ROC curve (AUC) for 3-year and 5-year RFS were 0.748 and 0.762 in the training cohort; 0.777 and 0.776 in the internal validation cohort; and 0.706 and 0.746 in the external validation cohort. Kaplan-Meier analysis showed significant differences in RFS between low- and high-risk groups across all cohorts (p < 0.0001, p < 0.0001, p = 0.0010, respectively). Nine genes, including MMP13, ITPKA, ATG9B, and CACNA1B, were identified as poor prognosis markers.

CONCLUSIONS

We developed and validated a robust nomogram for predicting RFS in cT1 ccRCC patients after nephrectomy, offering valuable insights for individualized patient management.

摘要

目的

本研究旨在开发并验证一种列线图,用于预测临床T1(cT1)期透明细胞肾细胞癌(ccRCC)患者肾切除术后的无复发生存期(RFS)。此外,还探索了不同风险组的转录谱。

方法

分析了天津医科大学第二医院2492例接受肾切除术的cT1 ccRCC患者的数据。进行单因素和多因素Cox比例风险回归分析,以确定RFS的独立预测因素。使用训练队列(n = 1744)和内部验证队列(n = 748)构建并验证列线图。使用一致性指数(C指数)、校准图、受试者工作特征(ROC)曲线、决策曲线分析(DCA)和Kaplan-Meier生存曲线评估模型性能。使用癌症基因组图谱(TCGA)ccRCC数据集进行外部验证。此外,应用Cox-Lasso回归分析来识别高危组中的风险相关基因。

结果

年龄、手术切缘状态、Fuhrman分级和pT3a分期被确定为独立预测因素。训练队列中3年和5年RFS的ROC曲线下面积(AUC)分别为0.748和0.762;内部验证队列中为0.777和0.776;外部验证队列中为0.706和0.746。Kaplan-Meier分析显示,所有队列中低风险组和高风险组的RFS存在显著差异(分别为p < 0.0001、p < 0.0001、p = 0.0010)。包括MMP13、ITPKA、ATG9B和CACNA1B在内的9个基因被确定为预后不良标志物。

结论

我们开发并验证了一种强大的列线图,用于预测cT1 ccRCC患者肾切除术后的RFS,为个体化患者管理提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4635/12139270/f3734d4603c2/12893_2025_2991_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验