Suppr超能文献

利用大规模数据探索 MD+FoldX 方法预测 SARS-CoV-2 抗体逃逸突变的能力。

Exploring the ability of the MD+FoldX method to predict SARS-CoV-2 antibody escape mutations using large-scale data.

机构信息

Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA.

Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, 83844, USA.

出版信息

Sci Rep. 2024 Oct 4;14(1):23122. doi: 10.1038/s41598-024-72491-z.

Abstract

Antibody escape mutations pose a significant challenge to the effectiveness of vaccines and antibody-based therapies. The ability to predict these escape mutations with computer simulations would allow us to detect threats early and develop effective countermeasures, but a lack of large-scale experimental data has hampered the validation of these calculations. In this study, we evaluate the ability of the MD+FoldX molecular modeling method to predict escape mutations by leveraging a large deep mutational scanning dataset, focusing on the SARS-CoV-2 receptor binding domain. Our results show a positive correlation between predicted and experimental data, indicating that mutations with reduced predicted binding affinity correlate moderately with higher experimental escape fractions. We also demonstrate that higher precision can be achieved using affinity cutoffs tailored to distinct SARS-CoV-2 antibodies from four different classes rather than a one-size-fits-all approach. Further, we suggest that the quartile values of optimized cutoffs reported for each class in this study can serve as a valuable guide for future work on escape mutation predictions. We find that 70% of the systems surpass the 50% precision mark, and demonstrate success in identifying mutations present in significant variants of concern and variants of interest. Despite promising results for some systems, our study highlights the challenges in comparing predicted and experimental values. It also emphasizes the need for new binding affinity methods with improved accuracy that are fast enough to estimate hundreds to thousands of antibody-antigen binding affinities.

摘要

抗体逃逸突变对疫苗和抗体为基础的疗法的有效性构成了重大挑战。通过计算机模拟预测这些逃逸突变的能力将使我们能够及早发现威胁,并制定有效的对策,但缺乏大规模的实验数据阻碍了这些计算的验证。在这项研究中,我们利用一个大型深度突变扫描数据集,专注于 SARS-CoV-2 受体结合域,评估 MD+FoldX 分子建模方法预测逃逸突变的能力。我们的结果表明,预测数据与实验数据之间存在正相关,这表明具有降低预测结合亲和力的突变与较高的实验逃逸分数中度相关。我们还证明,使用针对来自四个不同类别的不同 SARS-CoV-2 抗体量身定制的亲和力截止值,可以比一刀切的方法实现更高的精度。此外,我们建议本研究中为每个类别报告的优化截止值的四分位数值可以作为未来逃逸突变预测工作的有价值的指南。我们发现,70%的系统超过了 50%的精度标记,并成功地识别了在重要关注变体和感兴趣变体中存在的突变。尽管对于某些系统来说结果很有希望,但我们的研究强调了比较预测值和实验值的挑战。它还强调需要新的具有改进准确性的结合亲和力方法,这些方法的速度足够快,可以估计数百到数千个抗体-抗原结合亲和力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a5c/11452645/ca818a0637f5/41598_2024_72491_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验