Suppr超能文献

机器学习算法评估早产儿动脉导管未闭患者静脉用对乙酰氨基酚后临床结局与代谢酶单核苷酸多态性的比较分析。

Comparative Analysis of Machine Learning Algorithms Evaluating the Single Nucleotide Polymorphisms of Metabolizing Enzymes with Clinical Outcomes Following Intravenous Paracetamol in Preterm Neonates with Patent Ductus Arteriosus.

机构信息

Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.

Laboratory of Integrative Genomics, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.

出版信息

Curr Drug Metab. 2024;25(2):128-139. doi: 10.2174/0113892002289238240222072027.

Abstract

AIMS

Pharmacogenomics has been identified to play a crucial role in determining drug response. The present study aimed to identify significant genetic predictor variables influencing the therapeutic effect of paracetamol for new indications in preterm neonates.

BACKGROUND

Paracetamol has recently been preferred as a first-line drug for managing Patent Ductus Arteriosus (PDA) in preterm neonates. Single Nucleotide Polymorphisms (SNPs) in CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 have been observed to influence the therapeutic concentrations of paracetamol.

OBJECTIVES

The purpose of this study was to evaluate various Machine Learning Algorithms (MLAs) and bioinformatics tools for identifying the key genotype predictor of therapeutic outcomes following paracetamol administration in neonates with PDA.

METHODS

Preterm neonates with hemodynamically significant PDA were recruited in this prospective, observational study. The following SNPs were evaluated: CYP2E15B, CYP2E12, CYP3A41B, CYP3A42, CYP3A43, CYP3A53, CYP3A57, CYP3A511, CYP1A21C, CYP1A21K, CYP1A23, CYP1A24, CYP1A26, and CYP2D610. Amongst the MLAs, Artificial Neural Network (ANN), C5.0 algorithm, Classification and Regression Tree analysis (CART), discriminant analysis, and logistic regression were evaluated for successful closure of PDA. Generalized linear regression, ANN, CART, and linear regression were used to evaluate maximum serum acetaminophen concentrations. A two-step cluster analysis was carried out for both outcomes. Area Under the Curve (AUC) and Relative Error (RE) were used as the accuracy estimates. Stability analysis was carried out using tools, and Molecular Docking and Dynamics Studies were carried out for the above-mentioned enzymes.

RESULTS

Two-step cluster analyses have revealed CYP2D610 and CYP1A21C to be the key predictors of the successful closure of PDA and the maximum serum paracetamol concentrations in neonates. The ANN was observed with the maximum accuracy (AUC = 0.53) for predicting the successful closure of PDA with CYP2D610 as the most important predictor. Similarly, ANN was observed with the least RE (1.08) in predicting maximum serum paracetamol concentrations, with CYP2D610 as the most important predictor. Further MDS confirmed the conformational changes for P34A and P34S compared to the wildtype structure of CYP2D6 protein for stability, flexibility, compactness, hydrogen bond analysis, and the binding affinity when interacting with paracetamol, respectively. The alterations in enzyme activity of the mutant CYP2D6 were computed from the molecular simulation results.

CONCLUSION

We have identified CYP2D610 and CYP1A21C polymorphisms to significantly predict the therapeutic outcomes following the administration of paracetamol in preterm neonates with PDA. Prospective studies are required for confirmation of the findings in the vulnerable population.

摘要

目的

药物基因组学已被确定在确定药物反应中起着关键作用。本研究旨在确定影响早产儿新适应症扑热息痛治疗效果的重要遗传预测变量。

背景

扑热息痛最近已被优选为治疗早产儿动脉导管未闭(PDA)的一线药物。已经观察到细胞色素 P4501A2(CYP1A2)、细胞色素 P4502A6(CYP2A6)、细胞色素 P4502D6(CYP2D6)、细胞色素 P4502E1(CYP2E1)和细胞色素 P4503A4(CYP3A4)中的单核苷酸多态性(SNP)会影响扑热息痛的治疗浓度。

目的

本研究旨在评估各种机器学习算法(MLA)和生物信息学工具,以鉴定在接受 PDA 治疗的早产儿中使用扑热息痛后治疗结果的关键基因型预测因子。

方法

本前瞻性观察性研究招募了患有血流动力学显著 PDA 的早产儿。评估了以下 SNP:CYP2E15B、CYP2E12、CYP3A41B、CYP3A42、CYP3A43、CYP3A53、CYP3A57、CYP3A511、CYP1A21C、CYP1A21K、CYP1A23、CYP1A24、CYP1A26 和 CYP2D610。在 MLAs 中,评估了人工神经网络(ANN)、C5.0 算法、分类回归树分析(CART)、判别分析和逻辑回归,以评估 PDA 的成功关闭。广义线性回归、ANN、CART 和线性回归用于评估最大血清对乙酰氨基酚浓度。对两种结果进行了两步聚类分析。使用曲线下面积(AUC)和相对误差(RE)作为准确性估计。使用工具进行了稳定性分析,并对上述酶进行了分子对接和动力学研究。

结果

两步聚类分析显示 CYP2D610 和 CYP1A21C 是预测 PDA 成功关闭和新生儿最大血清扑热息痛浓度的关键预测因子。ANN 观察到最大的准确性(AUC=0.53),用于预测 CYP2D610 作为最重要的预测因子的 PDA 成功关闭。同样,ANN 观察到预测最大血清扑热息痛浓度的最低 RE(1.08),其中 CYP2D610 是最重要的预测因子。进一步的 MDS 证实,与野生型 CYP2D6 蛋白相比,P34A 和 P34S 的构象变化在稳定性、灵活性、紧凑性、氢键分析以及与扑热息痛相互作用时的结合亲和力方面,分别具有构象变化。从分子模拟结果计算出突变 CYP2D6 的酶活性变化。

结论

我们已经确定 CYP2D610 和 CYP1A21C 多态性可显著预测早产儿接受 PDA 治疗后扑热息痛的治疗效果。需要进行前瞻性研究以确认脆弱人群中的发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验