Suppr超能文献

纳米机械传感器阵列检测围手术期患者呼气中的肺癌。

Lung cancer detection in perioperative patients' exhaled breath with nanomechanical sensor array.

机构信息

Department of Thoracic Surgery, University of Tsukuba, Ibaraki, Japan.

Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), Ibaraki, Japan; Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Ibaraki, Japan.

出版信息

Lung Cancer. 2024 Apr;190:107514. doi: 10.1016/j.lungcan.2024.107514. Epub 2024 Feb 25.

Abstract

INTRODUCTION

Breath analysis using a chemical sensor array combined with machine learning algorithms may be applicable for detecting and screening lung cancer. In this study, we examined whether perioperative breath analysis can predict the presence of lung cancer using a Membrane-type Surface stress Sensor (MSS) array and machine learning.

METHODS

Patients who underwent lung cancer surgery at an academic medical center, Japan, between November 2018 and November 2019 were included. Exhaled breaths were collected just before surgery and about one month after surgery, and analyzed using an MSS array. The array had 12 channels with various receptor materials and provided 12 waveforms from a single exhaled breath sample. Boxplots of the perioperative changes in the expiratory waveforms of each channel were generated and Mann-Whitney U test were performed. An optimal lung cancer prediction model was created and validated using machine learning.

RESULTS

Sixty-six patients were enrolled of whom 57 were included in the analysis. Through the comprehensive analysis of the entire dataset, a prototype model for predicting lung cancer was created from the combination of array five channels. The optimal accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 0.809, 0.830, 0.807, 0.806, and 0.812, respectively.

CONCLUSION

Breath analysis with MSS and machine learning with careful control of both samples and measurement conditions provided a lung cancer prediction model, demonstrating its capacity for non-invasive screening of lung cancer.

摘要

简介

使用化学传感器阵列结合机器学习算法进行呼吸分析可能适用于检测和筛查肺癌。在这项研究中,我们使用膜型表面应力传感器 (MSS) 阵列和机器学习来检验围手术期呼吸分析是否可以预测肺癌的存在。

方法

纳入 2018 年 11 月至 2019 年 11 月在日本一家学术医疗中心接受肺癌手术的患者。在手术前和手术后大约一个月收集呼气,并使用 MSS 阵列进行分析。该阵列有 12 个具有不同受体材料的通道,可从单个呼气样本中提供 12 个波形。生成每个通道呼气波形的围手术期变化的箱线图,并进行曼-惠特尼 U 检验。使用机器学习创建和验证最佳的肺癌预测模型。

结果

共纳入 66 例患者,其中 57 例纳入分析。通过对整个数据集的综合分析,从五个通道的组合中创建了一个用于预测肺癌的原型模型。最佳准确性、敏感性、特异性、阳性预测值和阴性预测值分别为 0.809、0.830、0.807、0.806 和 0.812。

结论

使用 MSS 进行呼吸分析并结合对样本和测量条件的仔细控制进行机器学习,提供了一个肺癌预测模型,证明了其对肺癌非侵入性筛查的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验