College of Information Science and Engineering, Northeastern University, Shenyang, China.
Comput Methods Programs Biomed. 2024 Apr;247:108105. doi: 10.1016/j.cmpb.2024.108105. Epub 2024 Mar 1.
Electroencephalogram (EEG) signals record brain activity, with growing interest in quantifying neural activity through complexity analysis as a potential biological marker for schizophrenia. Presently, EEG complexity analysis primarily relies on manual feature extraction, which is subjective and yields varied findings in studies involving schizophrenia and healthy controls.
This study aims to leverage deep learning methods for enhanced EEG complexity exploration, aiding early schizophrenia screening and diagnosis. Our proposed approach utilizes a three-dimensional Convolutional Neural Network (3DCNN) to extract enhanced data features for early schizophrenia identification and subsequent complexity analysis. Leveraging the spatiotemporal capabilities of 3DCNN, we extract advanced latent features and employ knowledge distillation to reintegrate these features into the original channels, creating feature-enhanced data.
We employ a 10-fold cross-validation strategy, achieving the average accuracies of 99.46% and 98.06% in subject-dependent experiments on Dataset 1(14SZ and 14HC) and Dataset 2 (45SZ and 39HC). The average accuracy for subject-independent is 96.04% and 92.67% on both datasets. Feature extraction and classification are conducted on both the re-aggregated data and the original data. Our results demonstrate that re-aggregated data exhibit superior classification performance and a more stable training process after feature extraction. In the complexity analysis of re-aggregated data, we observe lower entropy features in schizophrenic patients compared to healthy controls, with more pronounced differences in the temporal and frontal lobes. Analyzing Katz's Fractal Dimension (KFD) across three sub-bands of lobe channels reveals the lowest α band KFD value in schizophrenia patients.
This emphasizes the ability of our method to enhance the discrimination and interpretability in schizophrenia detection and analysis. Our approach enhances the potential for EEG-based schizophrenia diagnosis by leveraging deep learning, offering superior discrimination capabilities and richer interpretive insights.
脑电图(EEG)信号记录大脑活动,通过复杂性分析来量化神经活动作为精神分裂症的潜在生物学标志物,这方面的兴趣日益增加。目前,EEG 复杂性分析主要依赖于手动特征提取,这种方法具有主观性,并且在涉及精神分裂症和健康对照组的研究中得出的结果也各不相同。
本研究旨在利用深度学习方法来增强 EEG 复杂性的探索,以帮助进行早期精神分裂症筛查和诊断。我们提出的方法使用三维卷积神经网络(3DCNN)来提取增强的数据特征,用于早期精神分裂症识别和随后的复杂性分析。利用 3DCNN 的时空能力,我们提取高级潜在特征,并利用知识蒸馏将这些特征重新整合到原始通道中,创建特征增强数据。
我们采用 10 折交叉验证策略,在数据集 1(14SZ 和 14HC)和数据集 2(45SZ 和 39HC)的基于受试者的实验中,平均准确率分别达到 99.46%和 98.06%。在两个数据集上的基于受试者的独立实验中,平均准确率分别为 96.04%和 92.67%。在重新聚合的数据和原始数据上进行特征提取和分类。我们的结果表明,在特征提取后,重新聚合的数据具有更好的分类性能和更稳定的训练过程。在重新聚合数据的复杂性分析中,我们观察到精神分裂症患者的熵特征较低,而在颞叶和额叶的差异更为明显。分析三个叶通道的子带的 Katz 分形维数(KFD)发现,精神分裂症患者的α频带 KFD 值最低。
这强调了我们的方法在精神分裂症检测和分析中增强区分能力和可解释性的能力。我们的方法通过利用深度学习增强了基于 EEG 的精神分裂症诊断的潜力,提供了更好的区分能力和更丰富的解释性见解。