Suppr超能文献

探索基于深度残差网络的特征,用于从 EEG 中自动检测精神分裂症。

Exploring deep residual network based features for automatic schizophrenia detection from EEG.

机构信息

Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia.

Centre for Health Research, University of Southern Queensland, Toowoomba, Australia.

出版信息

Phys Eng Sci Med. 2023 Jun;46(2):561-574. doi: 10.1007/s13246-023-01225-8. Epub 2023 Mar 22.

Abstract

Schizophrenia is a severe mental illness which can cause lifelong disability. Most recent studies on the Electroencephalogram (EEG)-based diagnosis of schizophrenia rely on bespoke/hand-crafted feature extraction techniques. Traditional manual feature extraction methods are time-consuming, imprecise, and have a limited ability to balance accuracy and efficiency. Addressing this issue, this study introduces a deep residual network (deep ResNet) based feature extraction design that can automatically extract representative features from EEG signal data for identifying schizophrenia. This proposed method consists of three stages: signal pre-processing by average filtering method, extraction of hidden patterns of EEG signals by deep ResNet, and classification of schizophrenia by softmax layer. To assess the performance of the obtained deep features, ResNet softmax classifier and also several machine learning (ML) techniques are applied on the same feature set. The experimental results for a Kaggle schizophrenia EEG dataset show that the deep features with support vector machine classifier could achieve the highest performances (99.23% accuracy) compared to the ResNet classifier. Furthermore, the proposed model performs better than the existing approaches. The findings suggest that our proposed strategy has capability to discover important biomarkers for automatic diagnosis of schizophrenia from EEG, which will aid in the development of a computer assisted diagnostic system by specialists.

摘要

精神分裂症是一种严重的精神疾病,可导致终身残疾。最近关于基于脑电图(EEG)的精神分裂症诊断的研究主要依赖于定制/手工制作的特征提取技术。传统的手动特征提取方法既耗时又不准确,并且在准确性和效率之间的平衡能力有限。针对这个问题,本研究引入了一种基于深度残差网络(deep ResNet)的特征提取设计,可自动从 EEG 信号数据中提取代表性特征,用于识别精神分裂症。该方法包括三个阶段:通过平均滤波方法对信号进行预处理,通过 deep ResNet 提取 EEG 信号的隐藏模式,以及通过 softmax 层对精神分裂症进行分类。为了评估获得的深度特征的性能,将 ResNet softmax 分类器以及几种机器学习(ML)技术应用于相同的特征集上。在 Kaggle 精神分裂症 EEG 数据集上的实验结果表明,与 ResNet 分类器相比,支持向量机分类器的深度特征可实现最高性能(99.23%的准确率)。此外,该模型的性能优于现有的方法。研究结果表明,我们提出的策略有能力从 EEG 中发现用于精神分裂症自动诊断的重要生物标志物,这将有助于专家开发计算机辅助诊断系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7b0/10209282/5b7a2a828a88/13246_2023_1225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验