文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

智能响应型 Fe/Mn 纳米疫苗通过细胞焦亡和细胞焦亡增强的 cGAS-STING 激活触发肝癌免疫治疗。

Smart responsive Fe/Mn nanovaccine triggers liver cancer immunotherapy via pyroptosis and pyroptosis-boosted cGAS-STING activation.

机构信息

Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.

Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.

出版信息

J Nanobiotechnology. 2024 Mar 6;22(1):95. doi: 10.1186/s12951-024-02354-2.


DOI:10.1186/s12951-024-02354-2
PMID:38448959
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10918897/
Abstract

BACKGROUND: The prognosis for hepatocellular carcinoma (HCC) remains suboptimal, characterized by high recurrence and metastasis rates. Although metalloimmunotherapy has shown potential in combating tumor proliferation, recurrence and metastasis, current apoptosis-based metalloimmunotherapy fails to elicit sufficient immune response for HCC. RESULTS: A smart responsive bimetallic nanovaccine was constructed to induce immunogenic cell death (ICD) through pyroptosis and enhance the efficacy of the cGAS-STING pathway. The nanovaccine was composed of manganese-doped mesoporous silica as a carrier, loaded with sorafenib (SOR) and modified with MIL-100 (Fe), where Fe, SOR, and Mn were synchronized and released into the tumor with the help of the tumor microenvironment (TME). Afterward, Fe worked synergistically with SOR-induced immunogenic pyroptosis (via both the classical and nonclassical signaling pathways), causing the outflow of abundant immunogenic factors, which contributes to dendritic cell (DC) maturation, and the exposure of double-stranded DNA (dsDNA). Subsequently, the exposed dsDNA and Mn jointly activated the cGAS-STING pathway and induced the release of type I interferons, which further led to DC maturation. Moreover, Mn-related T1 magnetic resonance imaging (MRI) was used to visually evaluate the smart response functionality of the nanovaccine. CONCLUSION: The utilization of metallic nanovaccines to induce pyroptosis-mediated immune activation provides a promising paradigm for HCC treatment.

摘要

背景:肝细胞癌(HCC)的预后仍然不理想,其特征是复发和转移率高。虽然金属免疫疗法在抑制肿瘤增殖、复发和转移方面显示出了潜力,但目前基于细胞凋亡的金属免疫疗法未能引发足够的 HCC 免疫反应。

结果:构建了一种智能响应的双金属纳米疫苗,通过细胞焦亡诱导免疫原性细胞死亡(ICD),并增强 cGAS-STING 途径的疗效。该纳米疫苗由锰掺杂介孔硅作为载体,负载索拉非尼(SOR),并通过 MIL-100(Fe)进行修饰,其中 Fe、SOR 和 Mn 借助肿瘤微环境(TME)同步释放到肿瘤中。随后,Fe 与 SOR 诱导的免疫原性细胞焦亡(通过经典和非经典信号通路)协同作用,导致大量免疫原性因子的外流,促进树突状细胞(DC)成熟,并暴露出双链 DNA(dsDNA)。随后,暴露的 dsDNA 和 Mn 共同激活 cGAS-STING 途径,诱导 I 型干扰素的释放,进而导致 DC 成熟。此外,Mn 相关的 T1 磁共振成像(MRI)用于直观评估纳米疫苗的智能响应功能。

结论:利用金属纳米疫苗诱导细胞焦亡介导的免疫激活为 HCC 治疗提供了一种有前途的范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/26408d9488b0/12951_2024_2354_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/78350194def5/12951_2024_2354_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/9e39c3e563a8/12951_2024_2354_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/778068cf9d93/12951_2024_2354_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/fddcfe3e58a1/12951_2024_2354_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/c33b590823e8/12951_2024_2354_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/a6f5b56f02b9/12951_2024_2354_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/6aa8a855c6bc/12951_2024_2354_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/45ceef5f2f9c/12951_2024_2354_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/26408d9488b0/12951_2024_2354_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/78350194def5/12951_2024_2354_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/9e39c3e563a8/12951_2024_2354_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/778068cf9d93/12951_2024_2354_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/fddcfe3e58a1/12951_2024_2354_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/c33b590823e8/12951_2024_2354_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/a6f5b56f02b9/12951_2024_2354_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/6aa8a855c6bc/12951_2024_2354_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/45ceef5f2f9c/12951_2024_2354_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43a2/10918897/26408d9488b0/12951_2024_2354_Fig10_HTML.jpg

相似文献

[1]
Smart responsive Fe/Mn nanovaccine triggers liver cancer immunotherapy via pyroptosis and pyroptosis-boosted cGAS-STING activation.

J Nanobiotechnology. 2024-3-6

[2]
Biodegradable Long-Circulating Nanoagonists Optimize Tumor-Tropism Chemo-Metalloimmunotherapy for Boosted Antitumor Immunity by Cascade cGAS-STING Pathway Activation.

ACS Nano. 2024-8-27

[3]
A homologous-targeting cGAS-STING agonist multimodally activates dendritic cells for enhanced cancer immunotherapy.

Acta Biomater. 2024-3-15

[4]
Gas-Amplified Metalloimmunotherapy with Dual Activation of Pyroptosis and the STING Pathway for Remodeling the Immunosuppressive Cervical Cancer Microenvironment.

ACS Nano. 2024-5-21

[5]
Manganese Coordination Micelles That Activate Stimulator of Interferon Genes and Capture In Situ Tumor Antigens for Cancer Metalloimmunotherapy.

ACS Nano. 2022-10-25

[6]
Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation.

Acta Biomater. 2024-6

[7]
A manganese-doped layered double hydroxide loaded with lactate oxidase and DNA repair inhibitors for synergistically enhanced tumor immunotherapy.

Acta Biomater. 2024-10-1

[8]
Engineering Bimetallic Polyphenol for Mild Photothermal Osteosarcoma Therapy and Immune Microenvironment Remodeling by Activating Pyroptosis and cGAS-STING Pathway.

Adv Healthc Mater. 2024-9

[9]
Hyperbaric oxygen facilitates teniposide-induced cGAS-STING activation to enhance the antitumor efficacy of PD-1 antibody in HCC.

J Immunother Cancer. 2022-8

[10]
A Cancer Nanovaccine Based on an FeAl-Layered Double Hydroxide Framework for Reactive Oxygen Species-Augmented Metalloimmunotherapy.

ACS Nano. 2024-3-19

引用本文的文献

[1]
Responsive biomaterials for therapeutic strategies of hepatocellular carcinoma.

Front Bioeng Biotechnol. 2025-8-20

[2]
Nano-enabled strategies for targeted immunotherapy in gastrointestinal cancers.

Front Immunol. 2025-8-14

[3]
Advances in nanomaterials for enhancing cGAS-STING pathway mediated anti-tumor treatment.

Mater Today Bio. 2025-8-11

[4]
Unlocking the therapeutic potential of the STING signaling pathway in anti-tumor treatment.

Clin Exp Med. 2025-8-12

[5]
Immune microenvironment in hepatocellular carcinoma: from pathogenesis to immunotherapy.

Cell Mol Immunol. 2025-6-11

[6]
Embracing cancer immunotherapy with manganese particles.

Cell Oncol (Dordr). 2025-5-21

[7]
Progress Update on STING Agonists as Vaccine Adjuvants.

Vaccines (Basel). 2025-3-31

[8]
Targeting pyroptosis for cancer immunotherapy: mechanistic insights and clinical perspectives.

Mol Cancer. 2025-5-3

[9]
TMTP1-modified nanocarrier boosts cervical cancer immunotherapy by eliciting pyroptosis.

Theranostics. 2025-4-13

[10]
Drug-loaded indocyanine green J-aggregates activate metalloimmunotherapy for sustained photothermal therapy of hepatocellular carcinoma.

J Nanobiotechnology. 2025-4-26

本文引用的文献

[1]
A Nanomedicine-Enabled Ion-Exchange Strategy for Enhancing Curcumin-Based Rheumatoid Arthritis Therapy.

Angew Chem Int Ed Engl. 2023-10-26

[2]
Nanomaterials for Disease Treatment by Modulating the Pyroptosis Pathway.

Adv Healthc Mater. 2024-1

[3]
Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy.

Biomater Res. 2023-4-15

[4]
Glutathione-Induced In Situ Michael Addition between Nanoparticles for Pyroptosis and Immunotherapy.

Angew Chem Int Ed Engl. 2023-5-8

[5]
MnOOH-Catalyzed Autoxidation of Glutathione for Reactive Oxygen Species Production and Nanocatalytic Tumor Innate Immunotherapy.

J Am Chem Soc. 2023-3-15

[6]
Drug-loaded microbubble delivery system to enhance PD-L1 blockade immunotherapy with remodeling immune microenvironment.

Biomater Res. 2023-2-9

[7]
ZIF-8 Nanoparticles Evoke Pyroptosis for High-Efficiency Cancer Immunotherapy.

Angew Chem Int Ed Engl. 2023-3-1

[8]
Immunogenic Cell Death Augmented by Manganese Zinc Sulfide Nanoparticles for Metastatic Melanoma Immunotherapy.

ACS Nano. 2022-9-27

[9]
Mitochondria-Targeting Polymer Micelle of Dichloroacetate Induced Pyroptosis to Enhance Osteosarcoma Immunotherapy.

ACS Nano. 2022-7-26

[10]
Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency.

Adv Sci (Weinh). 2022-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索