文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

免疫原性细胞死亡激活肿瘤免疫微环境以提高免疫治疗效率。

Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency.

机构信息

Department of Biotherapy, Huaxi MR Research Center (HMRRC), Day Surgery Center, Department of Radiology, Cancer Center, Research Core Facilities of West China Hospital, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA.

出版信息

Adv Sci (Weinh). 2022 Aug;9(22):e2201734. doi: 10.1002/advs.202201734. Epub 2022 Jun 2.


DOI:10.1002/advs.202201734
PMID:35652198
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9353475/
Abstract

Tumor immunotherapy is only effective in a fraction of patients due to a low response rate and severe side effects, and these challenges of immunotherapy in clinics can be addressed through induction of immunogenic cell death (ICD). ICD is elicited from many antitumor therapies to release danger associated molecular patterns (DAMPs) and tumor-associated antigens to facilitate maturation of dendritic cells (DCs) and infiltration of cytotoxic T lymphocytes (CTLs). The process can reverse the tumor immunosuppressive microenvironment to improve the sensitivity of immunotherapy. Nanostructure-based drug delivery systems (NDDSs) are explored to induce ICD by incorporating therapeutic molecules for chemotherapy, photosensitizers (PSs) for photodynamic therapy (PDT), photothermal conversion agents for photothermal therapy (PTT), and radiosensitizers for radiotherapy (RT). These NDDSs can release loaded agents at a right dose in the right place at the right time, resulting in greater effectiveness and lower toxicity. Immunotherapeutic agents can also be combined with these NDDSs to achieve the synergic antitumor effect in a multi-modality therapeutic approach. In this review, NDDSs are harnessed to load multiple agents to induce ICD by chemotherapy, PDT, PTT, and RT in combination of immunotherapy to promote the therapeutic effect and reduce side effects associated with cancer treatment.

摘要

肿瘤免疫疗法由于反应率低和严重的副作用,仅在一部分患者中有效,而这些免疫疗法在临床上的挑战可以通过诱导免疫原性细胞死亡(ICD)来解决。ICD 可以从许多抗肿瘤治疗中引发,以释放危险相关分子模式(DAMPs)和肿瘤相关抗原,从而促进树突状细胞(DCs)的成熟和细胞毒性 T 淋巴细胞(CTLs)的浸润。这一过程可以逆转肿瘤免疫抑制微环境,提高免疫疗法的敏感性。目前正在探索基于纳米结构的药物递送系统(NDDS),通过将化疗治疗分子、光动力疗法(PDT)的光敏剂(PS)、光热疗法(PTT)的光热转换剂和放射疗法(RT)的放射增敏剂等治疗分子整合到其中,来诱导 ICD。这些 NDDS 可以在适当的时间和地点以适当的剂量释放负载的药物,从而提高疗效,降低毒性。免疫治疗剂也可以与这些 NDDS 联合使用,以实现多模态治疗方法中的协同抗肿瘤作用。在这篇综述中,我们利用 NDDS 来负载多种药物,通过化疗、PDT、PTT 和 RT 联合免疫疗法诱导 ICD,以促进治疗效果并降低与癌症治疗相关的副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/2e9df652162d/ADVS-9-2201734-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/450067f0def7/ADVS-9-2201734-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/3dfa1b7cfa1f/ADVS-9-2201734-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/f588e406b056/ADVS-9-2201734-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/caedb690781d/ADVS-9-2201734-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/50566b5d246a/ADVS-9-2201734-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/2129018d30f3/ADVS-9-2201734-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/f78d9def1562/ADVS-9-2201734-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/2576f1215b36/ADVS-9-2201734-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/4d38337c022f/ADVS-9-2201734-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/e9b062b38e2e/ADVS-9-2201734-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/05c3a673808d/ADVS-9-2201734-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/f2670701fb86/ADVS-9-2201734-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/a914246fd834/ADVS-9-2201734-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/0fbf2b085c62/ADVS-9-2201734-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/2e9df652162d/ADVS-9-2201734-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/450067f0def7/ADVS-9-2201734-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/3dfa1b7cfa1f/ADVS-9-2201734-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/f588e406b056/ADVS-9-2201734-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/caedb690781d/ADVS-9-2201734-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/50566b5d246a/ADVS-9-2201734-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/2129018d30f3/ADVS-9-2201734-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/f78d9def1562/ADVS-9-2201734-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/2576f1215b36/ADVS-9-2201734-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/4d38337c022f/ADVS-9-2201734-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/e9b062b38e2e/ADVS-9-2201734-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/05c3a673808d/ADVS-9-2201734-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/f2670701fb86/ADVS-9-2201734-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/a914246fd834/ADVS-9-2201734-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/0fbf2b085c62/ADVS-9-2201734-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad64/9353475/2e9df652162d/ADVS-9-2201734-g010.jpg

相似文献

[1]
Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency.

Adv Sci (Weinh). 2022-8

[2]
Amplifying "eat me signal" by immunogenic cell death for potentiating cancer immunotherapy.

Immunol Rev. 2024-1

[3]
Nanomedicines for an Enhanced Immunogenic Cell Death-Based Cancer Vaccination Response.

Acc Chem Res. 2024-3-19

[4]
Nanomaterials-Based Photodynamic Therapy with Combined Treatment Improves Antitumor Efficacy Through Boosting Immunogenic Cell Death.

Int J Nanomedicine. 2021

[5]
Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy.

Acta Pharmacol Sin. 2020-7

[6]
Peptide vaccine-conjugated mesoporous carriers synergize with immunogenic cell death and PD-L1 blockade for amplified immunotherapy of metastatic spinal.

J Nanobiotechnology. 2021-8-12

[7]
Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy.

Biomaterials. 2022-3

[8]
Engineered nanomaterials for synergistic photo-immunotherapy.

Biomaterials. 2022-3

[9]
Self-Delivery Photodynamic Re-educator Enhanced Tumor Treatment by Inducing Immunogenic Cell Death and Improving Immunosuppressive Microenvironments.

ACS Appl Mater Interfaces. 2023-12-27

[10]
Combining Nanomedicine and Immunotherapy.

Acc Chem Res. 2019-5-23

引用本文的文献

[1]
Cancer Immunotherapy in Combination with Radiotherapy and/or Chemotherapy: Mechanisms and Clinical Therapy.

MedComm (2020). 2025-8-31

[2]
Dual molecularly imprinted nanocomposite with transferrin mediated glioma targeting and cholesterol exhaustion for synergistic cuproptosis/immune checkpoint blockade/immunogenic cell death.

Mater Today Bio. 2025-8-16

[3]
Low-dose radiation and stereotactic body radiotherapy with PD-1 inhibitor sintilimab and chemotherapy for first-line treatment of locally advanced or metastatic squamous lung cancer: protocol for a randomised phase II trial (IHC002 study).

BMJ Open. 2025-8-31

[4]
Engineered upconversion nanoparticles for breast cancer theranostics.

Theranostics. 2025-7-25

[5]
Spautin-1 inhibits the growth of diffuse large B-cell lymphoma by inducing mitochondrial damage-mediated PANoptosis and anti-tumor immunity.

Cancer Immunol Immunother. 2025-8-25

[6]
Machine learning-based construction of Immunogenic cell death-related score for improving prognosis and personalized treatment in glioma.

Sci Rep. 2025-8-19

[7]
Self-assembling RADA16-I peptide in situ hydrogel loaded with Celastrol boost immunogenic cell death in oral squamous cell carcinoma.

Drug Deliv Transl Res. 2025-8-18

[8]
Radionuclide-labeled nanomaterials for tumor therapy: Recent progress and perspectives.

Mater Today Bio. 2025-8-5

[9]
Biomineralized engineered -based in situ vaccination enhances antitumor immunity via sequential activation of chemo-immunotherapy.

J Immunother Cancer. 2025-8-17

[10]
MiR-183-5p inhibitor promotes mitoxantrone-induced immunogenic death of hepatoma cells by targeting STC1.

Int J Clin Exp Pathol. 2025-7-15

本文引用的文献

[1]
Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy.

Acta Pharm Sin B. 2022-6

[2]
Tumor cell membrane-camouflaged responsive nanoparticles enable MRI-guided immuno-chemodynamic therapy of orthotopic osteosarcoma.

Bioact Mater. 2022-1-26

[3]
A transistor-like pH-sensitive nanodetergent for selective cancer therapy.

Nat Nanotechnol. 2022-5

[4]
A pH-/Enzyme-Responsive Nanoparticle Selectively Targets Endosomal Toll-like Receptors to Potentiate Robust Cancer Vaccination.

Nano Lett. 2022-4-13

[5]
Immunotherapy of Malignant Glioma by Noninvasive Administration of TLR9 Agonist CpG Nano-Immunoadjuvant.

Adv Sci (Weinh). 2022-5

[6]
Platelets for cancer treatment and drug delivery.

Clin Transl Oncol. 2022-7

[7]
The mechanism of HMGB1 secretion and release.

Exp Mol Med. 2022-2

[8]
Bioinspired and biomimetic micro- and nanostructures in biomedicine.

J Control Release. 2022-3

[9]
Immunogenic cell stress and death.

Nat Immunol. 2022-4

[10]
GSH-sensitive polymeric prodrug: Synthesis and loading with photosensitizers as nanoscale chemo-photodynamic anti-cancer nanomedicine.

Acta Pharm Sin B. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索