College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
Department of Pharmaceutical Engineering, Dankook University, Cheonan, 31116, Republic of Korea.
ACS Nano. 2024 Mar 19;18(11):8392-8410. doi: 10.1021/acsnano.3c13039. Epub 2024 Mar 7.
Therapeutic antibodies that block vascular endothelial growth factor (VEGF) show clinical benefits in treating nonsmall cell lung cancers (NSCLCs) by inhibiting tumor angiogenesis. Nonetheless, the therapeutic effects of systemically administered anti-VEGF antibodies are often hindered in NSCLCs because of their limited distribution in the lungs and their adverse effects on normal tissues. These challenges can be overcome by delivering therapeutic antibodies in their mRNA form to lung endothelial cells, a primary target of VEGF-mediated pulmonary angiogenesis, to suppress the NSCLCs. In this study, we synthesized derivatives of poly(β-amino esters) (PBAEs) and prepared nanoparticles to encapsulate the synthetic mRNA encoding bevacizumab, an anti-VEGF antibody used in the clinic. Optimization of nanoparticle formulations resulted in a selective lung transfection after intravenous administration. Notably, the optimized PBAE nanoparticles were distributed in lung endothelial cells, resulting in the secretion of bevacizumab. We analyzed the protein corona on the lung- and spleen-targeting nanoparticles using proteomics and found distinctive features potentially contributing to their organ-selectivity. Lastly, bevacizumab mRNA delivered by the lung-targeting PBAE nanoparticles more significantly inhibited tumor proliferation and angiogenesis than recombinant bevacizumab protein in orthotopic NSCLC mouse models, supporting the therapeutic potential of bevacizumab mRNA therapy and its selective delivery through lung-targeting nanoparticles. Our proof-of-principle results highlight the clinical benefits of nanoparticle-mediated mRNA therapy in anticancer antibody treatment in preclinical models.
通过抑制肿瘤血管生成,阻断血管内皮生长因子(VEGF)的治疗性抗体在治疗非小细胞肺癌(NSCLC)方面显示出临床益处。然而,由于其在肺部的分布有限,以及对正常组织的不良反应,全身性给予抗 VEGF 抗体的治疗效果常常受到限制。通过将治疗性抗体的 mRNA 形式递送至肺内皮细胞,即 VEGF 介导的肺血管生成的主要靶点,可以克服这些挑战,从而抑制 NSCLC。在这项研究中,我们合成了聚(β-氨基酯)(PBAE)的衍生物,并制备了纳米颗粒来包裹合成的编码贝伐单抗(一种临床上使用的抗 VEGF 抗体)的 mRNA。优化纳米颗粒配方后,可实现静脉给药后的选择性肺部转染。值得注意的是,优化后的 PBAE 纳米颗粒分布在肺内皮细胞中,导致贝伐单抗的分泌。我们使用蛋白质组学分析了肺和脾靶向纳米颗粒上的蛋白质冠,并发现了可能有助于其器官选择性的独特特征。最后,与重组贝伐单抗蛋白相比,通过肺靶向 PBAE 纳米颗粒递送的贝伐单抗 mRNA 更显著地抑制了荷瘤 NSCLC 小鼠模型中的肿瘤增殖和血管生成,支持了贝伐单抗 mRNA 治疗及其通过肺靶向纳米颗粒进行选择性递送的治疗潜力。我们的初步研究结果突出了纳米颗粒介导的 mRNA 疗法在临床前模型中用于抗癌抗体治疗的临床益处。