Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Nov-Dec;16(6):e2017. doi: 10.1002/wnan.2017.
Messenger ribonucleic acid (mRNA) therapeutics are attracting attention as promising tools in cancer immunotherapy due to their ability to leverage the in vivo expression of all known protein sequences. Even small amounts of mRNA can have a powerful effect on cancer vaccines by promoting the synthesis of tumor-specific antigens (TSA) or tumor-associated antigens (TAA) by antigen-presenting cells (APC). These antigens are then presented to T cells, eliciting strong antitumor immune stimulation. The potential of mRNA can be further enhanced by expressing immunomodulatory agents, such as cytokines, antibodies, and chimeric antigen receptors (CAR), enhancing tumor immunity. Recent research also explores mRNA-encoded tumor death inducers or tumor microenvironment (TME) modulators. Despite its promise, the clinical translation of mRNA-based anticancer strategies faces challenges, including inefficient targeted delivery in vivo, failure of endosomal escape, and inadequate intracellular mRNA release, resulting in poor transfection efficiencies. Inspired by the approval of lipid nanoparticle-loaded mRNA vaccines against coronavirus disease 2019 (COVID-19) and the encouraging outcomes of mRNA-based cancer therapies in trials, innovative nonviral nanotechnology delivery systems have been engineered. These aim to advance mRNA-based cancer immunotherapies from research to clinical application. This review summarizes recent preclinical and clinical progress in lipid and polymeric nanomedicines for delivering mRNA-encoded antitumor therapeutics, including cytokines and antibody-based immunotherapies, cancer vaccines, and CAR therapies. It also addresses advanced delivery systems for direct oncolysis or TME reprogramming and highlights key challenges in translating these therapies to clinical use, exploring future perspectives, including the role of artificial intelligence and machine learning in their development.
信使核糖核酸 (mRNA) 疗法因其能够利用体内所有已知蛋白质序列的表达而成为癌症免疫治疗中极具前景的工具。即使是少量的 mRNA 也可以通过抗原呈递细胞 (APC) 促进肿瘤特异性抗原 (TSA) 或肿瘤相关抗原 (TAA) 的合成,对癌症疫苗产生强大的作用。然后,这些抗原被呈递给 T 细胞,引发强烈的抗肿瘤免疫刺激。通过表达免疫调节剂,如细胞因子、抗体和嵌合抗原受体 (CAR),可以进一步增强 mRNA 的潜力,增强肿瘤免疫。最近的研究还探索了 mRNA 编码的肿瘤死亡诱导剂或肿瘤微环境 (TME) 调节剂。尽管具有潜力,但基于 mRNA 的抗癌策略的临床转化仍面临挑战,包括体内靶向递送效率低下、内体逃逸失败以及细胞内 mRNA 释放不足,导致转染效率低下。受 2019 年冠状病毒病 (COVID-19) 载有脂质纳米颗粒的 mRNA 疫苗获批以及临床试验中基于 mRNA 的癌症疗法令人鼓舞的结果的启发,已经设计了创新的非病毒纳米技术递送系统。这些系统旨在将基于 mRNA 的癌症免疫疗法从研究推进到临床应用。本文综述了用于递送编码抗肿瘤治疗剂的 mRNA 的脂质和聚合物纳米药物的最近临床前和临床进展,包括细胞因子和基于抗体的免疫疗法、癌症疫苗和 CAR 疗法。它还解决了用于直接肿瘤溶解或 TME 重编程的先进递送系统,并强调了将这些疗法转化为临床应用的关键挑战,探讨了未来的观点,包括人工智能和机器学习在其发展中的作用。