Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
Acta Crystallogr D Struct Biol. 2024 Apr 1;80(Pt 4):220-231. doi: 10.1107/S2059798324001815. Epub 2024 Mar 7.
The axoneme, a microtubule-based array at the center of every cilium, has been the subject of structural investigations for decades, but only recent advances in cryo-EM and cryo-ET have allowed a molecular-level interpretation of the entire complex to be achieved. The unique properties of the nine doublet microtubules and central pair of singlet microtubules that form the axoneme, including the highly decorated tubulin lattice and the docking of massive axonemal complexes, provide opportunities and challenges for sample preparation, 3D reconstruction and atomic modeling. Here, the approaches used for cryo-EM and cryo-ET of axonemes are reviewed, while highlighting the unique opportunities provided by the latest generation of AI-guided tools that are transforming structural biology.
轴丝是每个纤毛中心的基于微管的阵列,几十年来一直是结构研究的主题,但只有近年来冷冻电镜和冷冻电子断层扫描技术的进步,才使得能够对整个复合物进行分子水平的解释。形成轴丝的九对二联体微管和中央一对单体微管的独特性质,包括高度装饰的微管晶格和大量轴丝复合物的对接,为样品制备、3D 重建和原子建模提供了机会和挑战。在这里,回顾了用于轴丝的冷冻电镜和冷冻电子断层扫描的方法,同时强调了最新一代人工智能引导工具所提供的独特机会,这些工具正在改变结构生物学。