Suppr超能文献

基于脑电图的脑功能网络分析用于痴呆相关障碍及其发病的鉴别。

EEG-Based Brain Functional Network Analysis for Differential Identification of Dementia-Related Disorders and Their Onset.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:1198-1209. doi: 10.1109/TNSRE.2024.3374651. Epub 2024 Mar 14.

Abstract

Diagnosing and treating dementia, including mild cognitive impairment (MCI), is challenging due to diverse disease types and overlapping symptoms. Early MCI detection is vital as it can precede dementia, yet distinguishing it from later stage dementia is intricate due to subtle symptoms. The primary objective of this study is to adopt a complex network perspective to unravel the underlying pathophysiological mechanisms of dementia-related disorders. Leveraging the extensive availability of electroencephalogram (EEG) data, our study focuses on the meticulous identification and analysis of EEG-based brain functional network (BFNs) associated with dementia-related disorders. To achieve this, we employ the Phase Lag Index (PLI) as a connectivity measure, offering a comprehensive view of neural interactions. To enhance the analytical rigor, we introduce a data-driven threshold selection technique. This innovative approach allows us to compare the topological structures of the formulated BFNs using complex network measures quantitatively and statistically. Furthermore, we harness the power of these BFNs by utilizing them as pre-defined graph inputs for a Graph Convolution Network (GCN-net) based approach. The results demonstrate that graph theory metrics, such as the rich-club coefficient, transitivity, and assortativity coefficients, effectively distinguish between MCI, Alzheimer's disease (AD) and vascular dementia (VD). Furthermore, GCN-net achieves high accuracy (95.07% delta, 80.62% theta) and F1-scores (0.92 delta, 0.67 theta), highlighting the effectiveness of EEG-based BFNs in the analysis of dementia-related disorders.

摘要

诊断和治疗痴呆症,包括轻度认知障碍(MCI),具有挑战性,因为疾病类型多样,症状重叠。早期 MCI 的检测至关重要,因为它可能先于痴呆症,但由于症状细微,将其与晚期痴呆症区分开来很复杂。本研究的主要目的是采用复杂网络的角度来揭示与痴呆相关的疾病的潜在病理生理机制。利用脑电图(EEG)数据的广泛可用性,我们的研究侧重于对与痴呆相关的疾病相关的基于 EEG 的脑功能网络(BFN)进行细致的识别和分析。为了实现这一目标,我们采用相位滞后指数(PLI)作为连接性度量,提供了神经相互作用的全面视图。为了提高分析的严格性,我们引入了一种数据驱动的阈值选择技术。这种创新方法允许我们使用复杂网络措施对定量和统计地对公式化 BFN 的拓扑结构进行比较。此外,我们通过将这些 BFN 用作基于图卷积网络(GCN-net)的方法的预定义图输入来利用它们的功能。结果表明,图论指标,如丰富俱乐部系数、传递性和聚类系数,可有效区分 MCI、阿尔茨海默病(AD)和血管性痴呆(VD)。此外,GCN-net 实现了高准确性(95.07%的 delta,80.62%的 theta)和 F1 分数(0.92 的 delta,0.67 的 theta),突出了基于 EEG 的 BFN 在分析与痴呆相关的疾病中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验