Suppr超能文献

定量脑电图生物标志物在阿尔茨海默病和轻度认知障碍中的作用:应用与见解。

The role of quantitative EEG biomarkers in Alzheimer's disease and mild cognitive impairment: applications and insights.

作者信息

Yuan Yue, Zhao Yang

机构信息

Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China.

出版信息

Front Aging Neurosci. 2025 Apr 23;17:1522552. doi: 10.3389/fnagi.2025.1522552. eCollection 2025.

Abstract

Alzheimer's disease (AD) is characterized by the pathological accumulation of amyloid plaques and hyperphosphorylated tau proteins, leading to disruptions in synaptic transmission and neural circuit alterations. Despite advancements in therapies to delay disease progression, there is a pressing need for simple, non-invasive, and accessible biomarkers to evaluate their effectiveness. Quantitative electroencephalography (qEEG), a computational method for quantifying brain electrical activity, is increasingly applied in AD research. We highlight the application of qEEG biomarkers, including power spectrum analysis (oscillatory activity within frequency bands), functional connectivity (coherent neural couplings) and effective connectivity (directional neural interactions), microstates (brief, stable states of the brain network), and non-linear analyses (e.g., entropy and EEG network analysis). These biomarkers can reflect real-time neural dynamics, making them ideal tools for diagnosis and monitoring the progression AD and mild cognitive impairment (MCI). It has been shown that decreased α power and increased θ power within the qEEG spectrum correlate with enhanced AD severity. Data from microstate analysis have demonstrated significant variations in temporal dynamics in patients with AD. Non-linear measures, such as entropy, have identified marked reductions in neural complexity in AD and MCI patients, indicating that they may serve as early diagnostic markers. Compared to traditional neuroimaging techniques, such as magnetic resonance imaging (MRI) or positron emission tomography (PET), qEEG is known to be cost-effective and facilitates real-time monitoring. Overall, qEEG biomarkers are promising for advancing AD research due to their non-invasive nature, affordability, and ability to capture real-time neural activity. Integrating qEEG with multimodal neuroimaging and clinical profiles may facilitate earlier identification and precision therapies. Future research should focus on standardizing protocols, validating biomarkers across diverse cohorts, and exploring their potential in large-scale clinical trials.

摘要

阿尔茨海默病(AD)的特征是淀粉样斑块和过度磷酸化的tau蛋白的病理积累,导致突触传递中断和神经回路改变。尽管在延缓疾病进展的治疗方面取得了进展,但迫切需要简单、无创且易于获得的生物标志物来评估其有效性。定量脑电图(qEEG)是一种用于量化脑电活动的计算方法,越来越多地应用于AD研究。我们重点介绍了qEEG生物标志物的应用,包括功率谱分析(频段内的振荡活动)、功能连接(相干神经耦合)和有效连接(定向神经相互作用)、微状态(脑网络的短暂、稳定状态)以及非线性分析(例如,熵和脑电图网络分析)。这些生物标志物可以反映实时神经动力学,使其成为诊断和监测AD及轻度认知障碍(MCI)进展的理想工具。研究表明,qEEG频谱内α功率降低和θ功率增加与AD严重程度增强相关。微状态分析的数据表明,AD患者的时间动态存在显著差异。诸如熵等非线性测量方法已确定AD和MCI患者的神经复杂性明显降低,这表明它们可能作为早期诊断标志物。与传统神经成像技术,如磁共振成像(MRI)或正电子发射断层扫描(PET)相比,qEEG具有成本效益高且便于实时监测的特点。总体而言,qEEG生物标志物因其非侵入性、可承受性以及捕获实时神经活动的能力,在推进AD研究方面具有广阔前景。将qEEG与多模态神经成像和临床特征相结合,可能有助于更早地识别和精准治疗。未来的研究应专注于标准化方案、在不同队列中验证生物标志物以及探索它们在大规模临床试验中的潜力。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验