Suppr超能文献

相似文献

1
Proteome-scale movements and compartment connectivity during the eukaryotic cell cycle.
Cell. 2024 Mar 14;187(6):1490-1507.e21. doi: 10.1016/j.cell.2024.02.014. Epub 2024 Mar 6.
2
Protocol for cell image-based spatiotemporal proteomics in budding yeast.
STAR Protoc. 2025 Mar 21;6(1):103577. doi: 10.1016/j.xpro.2024.103577. Epub 2025 Jan 16.
4
Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT.
Methods Mol Biol. 2019;2049:165-190. doi: 10.1007/978-1-4939-9736-7_10.
5
Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis.
Cell. 2015 Jun 4;161(6):1413-24. doi: 10.1016/j.cell.2015.04.051.
6
A novel single-cell screening platform reveals proteome plasticity during yeast stress responses.
J Cell Biol. 2013 Mar 18;200(6):839-50. doi: 10.1083/jcb.201301120.
7
Global analysis of protein localization in budding yeast.
Nature. 2003 Oct 16;425(6959):686-91. doi: 10.1038/nature02026.
8
Proteomics and systems biology to tackle biological complexity: Yeast as a case study.
Proteomics. 2010 Dec;10(24):4337-41. doi: 10.1002/pmic.201000114.
10
Automated analysis of high-content microscopy data with deep learning.
Mol Syst Biol. 2017 Apr 18;13(4):924. doi: 10.15252/msb.20177551.

引用本文的文献

1
Sphingolipid synthesis maintains nuclear membrane integrity and genome stability during cell division.
J Cell Biol. 2025 Aug 4;224(8). doi: 10.1083/jcb.202407209. Epub 2025 Jul 3.
2
Single-cell imaging of protein dynamics of paralogs reveals sources of gene retention.
iScience. 2025 May 27;28(7):112771. doi: 10.1016/j.isci.2025.112771. eCollection 2025 Jul 18.
3
Proteasome dynamics in response to metabolic changes.
Front Cell Dev Biol. 2025 Mar 3;13:1523382. doi: 10.3389/fcell.2025.1523382. eCollection 2025.
4
Protocol for cell image-based spatiotemporal proteomics in budding yeast.
STAR Protoc. 2025 Mar 21;6(1):103577. doi: 10.1016/j.xpro.2024.103577. Epub 2025 Jan 16.
5
Patterns of protein synthesis in the budding yeast cell cycle: variable or constant?
Microb Cell. 2024 Aug 20;11:321-327. doi: 10.15698/mic2024.08.835. eCollection 2024.
6
High-resolution spatiotemporal mapping: a comprehensive view of eukaryotic cell cycle proteome dynamics.
Signal Transduct Target Ther. 2024 May 22;9(1):137. doi: 10.1038/s41392-024-01850-z.

本文引用的文献

1
Spatially resolved single-cell translatomics at molecular resolution.
Science. 2023 Jun 30;380(6652):eadd3067. doi: 10.1126/science.add3067.
2
Quantitative proteome and phosphoproteome datasets of DNA replication and mitosis in .
Data Brief. 2022 Nov 9;45:108741. doi: 10.1016/j.dib.2022.108741. eCollection 2022 Dec.
3
TORC1 and PKA activity towards ribosome biogenesis oscillates in synchrony with the budding yeast cell cycle.
J Cell Sci. 2022 Sep 15;135(18). doi: 10.1242/jcs.260378. Epub 2022 Sep 28.
4
The G1/S repressor WHI5 is expressed at similar levels throughout the cell cycle.
BMC Res Notes. 2022 Jul 15;15(1):248. doi: 10.1186/s13104-022-06142-9.
6
Single-cell metabolomics hits its stride.
Nat Methods. 2021 Dec;18(12):1452-1456. doi: 10.1038/s41592-021-01333-x.
9
Spatiotemporal dissection of the cell cycle with single-cell proteogenomics.
Nature. 2021 Feb;590(7847):649-654. doi: 10.1038/s41586-021-03232-9. Epub 2021 Feb 24.
10
In-depth and 3-dimensional exploration of the budding yeast phosphoproteome.
EMBO Rep. 2021 Feb 3;22(2):e51121. doi: 10.15252/embr.202051121. Epub 2021 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验