Suppr超能文献

减轻人工智能驱动的心血管成像中的算法偏差以实现更公平的诊断。

Mitigating Algorithmic Bias in AI-Driven Cardiovascular Imaging for Fairer Diagnostics.

作者信息

Sufian Md Abu, Alsadder Lujain, Hamzi Wahiba, Zaman Sadia, Sagar A S M Sharifuzzaman, Hamzi Boumediene

机构信息

IVR Low-Carbon Research Institute, Chang'an University, Xi'an 710018, China.

School of Computing and Mathematical Sciences, University of Leicester, Leichester LE1 7RH, UK.

出版信息

Diagnostics (Basel). 2024 Nov 27;14(23):2675. doi: 10.3390/diagnostics14232675.

Abstract

: The research addresses algorithmic bias in deep learning models for cardiovascular risk prediction, focusing on fairness across demographic and socioeconomic groups to mitigate health disparities. It integrates fairness-aware algorithms, susceptible carrier-infected-recovered (SCIR) models, and interpretability frameworks to combine fairness with actionable AI insights supported by robust segmentation and classification metrics. : The research utilised quantitative 3D/4D heart magnetic resonance imaging and tabular datasets from the Cardiac Atlas Project's (CAP) open challenges to explore AI-driven methodologies for mitigating algorithmic bias in cardiac imaging. The SCIR model, known for its robustness, was adapted with the Capuchin algorithm, adversarial debiasing, Fairlearn, and post-processing with equalised odds. The robustness of the SCIR model was further demonstrated in the fairness evaluation metrics, which included demographic parity, equal opportunity difference (0.037), equalised odds difference (0.026), disparate impact (1.081), and Theil Index (0.249). For interpretability, YOLOv5, Mask R-CNN, and ResNet18 were implemented with LIME and SHAP. Bias mitigation improved disparate impact (0.80 to 0.95), reduced equal opportunity difference (0.20 to 0.05), and decreased false favourable rates for males (0.0059 to 0.0033) and females (0.0096 to 0.0064) through balanced probability adjustment. : The SCIR model outperformed the SIR model (recovery rate: 1.38 vs 0.83) with a -10% transmission bias impact. Parameters (β=0.5, δ=0.2, γ=0.15) reduced susceptible counts to 2.53×10-12 and increased recovered counts to 9.98 by t=50. YOLOv5 achieved high Intersection over Union (IoU) scores (94.8%, 93.7%, 80.6% for normal, severe, and abnormal cases). Mask R-CNN showed 82.5% peak confidence, while ResNet demonstrated a 10.4% accuracy drop under noise. Performance metrics (IoU: 0.91-0.96, Dice: 0.941-0.980, Kappa: 0.95) highlighted strong predictive accuracy and reliability. : The findings validate the effectiveness of fairness-aware algorithms in addressing cardiovascular predictive model biases. The integration of fairness and explainable AI not only promotes equitable diagnostic precision but also significantly reduces diagnostic disparities across vulnerable populations. This reduction in disparities is a key outcome of the research, enhancing clinical trust in AI-driven systems. The promising results of this study pave the way for future work that will explore scalability in real-world clinical settings and address limitations such as computational complexity in large-scale data processing.

摘要

该研究探讨了用于心血管风险预测的深度学习模型中的算法偏差,重点关注不同人口统计学和社会经济群体之间的公平性,以减轻健康差距。它整合了公平感知算法、易感-感染-康复(SCIR)模型和可解释性框架,将公平性与由强大的分割和分类指标支持的可操作人工智能见解相结合。

该研究利用来自心脏图谱项目(CAP)开放挑战的定量3D/4D心脏磁共振成像和表格数据集,探索用于减轻心脏成像中算法偏差的人工智能驱动方法。以其稳健性而闻名的SCIR模型通过卷尾猴算法、对抗性去偏、Fairlearn以及采用均等赔率的后处理进行了调整。SCIR模型的稳健性在公平性评估指标中得到进一步证明,这些指标包括人口统计学均等、平等机会差异(0.037)、均等赔率差异(0.026)、差异影响(1.081)和泰尔指数(0.249)。为了实现可解释性,使用LIME和SHAP实现了YOLOv5、Mask R-CNN和ResNet18。通过平衡概率调整,偏差减轻改善了差异影响(从0.80降至0.95),降低了平等机会差异(从0.20降至0.05),并降低了男性(从0.0059降至0.0033)和女性(从0.0096降至0.0064)的假阳性率。

SCIR模型在传输偏差影响为-10%的情况下优于SIR模型(恢复率:1.38对0.83)。参数(β=0.5,δ=0.2,γ=0.15)在t=50时将易感计数降至2.53×10-12,并将康复计数增至9.98。YOLOv5实现了较高的交并比(IoU)分数(正常、严重和异常病例分别为94.8%、93.7%、80.6%)。Mask R-CNN显示出82.5%的峰值置信度,而ResNet在噪声下准确率下降了10.4%。性能指标(IoU:0.91-0.96,Dice:0.941-0.980,Kappa:0.95)突出了强大的预测准确性和可靠性。

这些发现验证了公平感知算法在解决心血管预测模型偏差方面的有效性。公平性与可解释人工智能的整合不仅促进了公平的诊断精度,还显著减少了弱势群体之间的诊断差距。这种差距的减少是该研究的关键成果,增强了对人工智能驱动系统的临床信任。这项研究的 promising 结果为未来的工作铺平了道路,未来工作将探索在实际临床环境中的可扩展性,并解决诸如大规模数据处理中的计算复杂性等局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/236b/11640708/c88ff7ab1138/diagnostics-14-02675-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验