Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Medical College, Qingdao University, Qingdao, China.
Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
J Affect Disord. 2024 May 15;353:90-98. doi: 10.1016/j.jad.2024.03.009. Epub 2024 Mar 5.
Reversion from mild cognitive impairment (MCI) to normal cognition (NC) is not uncommon and indicates a better cognitive trajectory. This study aims to identify predictors of MCI reversion and develop a predicting model.
A total of 391 MCI subjects (mean age = 74.3 years, female = 61 %) who had baseline data of magnetic resonance imaging, clinical, and neuropsychological measurements were followed for two years. Multivariate logistic analyses were used to identify the predictors of MCI reversion after adjusting for age and sex. A stepwise backward logistic regression model was used to construct a predictive nomogram for MCI reversion. The nomogram was validated by internal bootstrapping and in an independent cohort.
In the training cohort, the 2-year reversion rate was 19.95 %. Predictors associated with reversion to NC were higher education level (p = 0.004), absence of APOE4 allele (p = 0.001), larger brain volume (p < 0.005), better neuropsychological measurements performance (p < 0.001), higher glomerular filtration rate (p = 0.035), and lower mean arterial pressure (p = 0.060). The nomogram incorporating five predictors (education, hippocampus volume, the Alzheimer's Disease Assessment Scale-Cognitive score, the Rey Auditory Verbal Learning Test-immediate score, and mean arterial pressure) achieved good C-indexes of 0.892 (95 % confidence interval [CI], 0.859-0.926) and 0.806 (95 % CI, 0.709-0.902) for the training and validation cohort.
Observational duration is relatively short; The predicting model warrant further validation in larger samples.
This prediction model could facilitate risk stratification and early management for the MCI population.
从轻度认知障碍 (MCI) 恢复为正常认知 (NC) 并不罕见,这表明认知轨迹较好。本研究旨在确定 MCI 恢复的预测因素,并建立预测模型。
共纳入 391 名 MCI 患者(平均年龄 74.3 岁,女性 61%),他们具有基线磁共振成像、临床和神经心理学测量数据,并随访了两年。采用多变量逻辑分析,在校正年龄和性别后,确定 MCI 恢复的预测因素。采用逐步向后逻辑回归模型构建 MCI 恢复的预测列线图。通过内部自举和独立队列验证列线图。
在训练队列中,2 年的恢复率为 19.95%。与恢复为 NC 相关的预测因素包括较高的教育水平(p=0.004)、不存在 APOE4 等位基因(p=0.001)、较大的脑容量(p<0.005)、更好的神经心理学测量表现(p<0.001)、较高的肾小球滤过率(p=0.035)和较低的平均动脉压(p=0.060)。纳入五个预测因素(教育、海马体积、阿尔茨海默病评估量表认知评分、 Rey 听觉言语学习测试即时评分和平均动脉压)的列线图在训练队列和验证队列中获得了良好的 C 指数,分别为 0.892(95%置信区间 [CI],0.859-0.926)和 0.806(95%CI,0.709-0.902)。
观察持续时间相对较短;预测模型需要在更大的样本中进一步验证。
该预测模型有助于对 MCI 人群进行风险分层和早期管理。