Department of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.
Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China.
NPJ Syst Biol Appl. 2024 Mar 7;10(1):26. doi: 10.1038/s41540-024-00353-5.
Cell migration is crucial for numerous physiological and pathological processes. A cell adapts its morphology, including the overall and nuclear morphology, in response to various cues in complex microenvironments, such as topotaxis and chemotaxis during migration. Thus, the dynamics of cellular morphology can encode migration strategies, from which diverse migration mechanisms can be inferred. However, deciphering the mechanisms behind cell migration encoded in morphology dynamics remains a challenging problem. Here, we present a powerful universal metric, the Cell Morphological Entropy (CME), developed by combining parametric morphological analysis with Shannon entropy. The utility of CME, which accurately quantifies the complex cellular morphology at multiple length scales through the deviation from a perfectly circular shape, is illustrated using a variety of normal and tumor cell lines in different in vitro microenvironments. Our results show how geometric constraints affect the MDA-MB-231 cell nucleus, the emerging interactions of MCF-10A cells migrating on collagen gel, and the critical transition from proliferation to invasion in tumor spheroids. The analysis demonstrates that the CME-based approach provides an effective and physically interpretable tool to measure morphology in real-time across multiple length scales. It provides deeper insight into cell migration and contributes to the understanding of different behavioral modes and collective cell motility in more complex microenvironments.
细胞迁移对于许多生理和病理过程至关重要。细胞会根据复杂微环境中的各种信号(如趋地性和趋化性)来调整其形态,包括整体形态和核形态。因此,细胞形态的动力学可以编码迁移策略,从中可以推断出不同的迁移机制。然而,解析形态动力学中编码的细胞迁移机制仍然是一个具有挑战性的问题。在这里,我们提出了一种强大的通用度量标准,即细胞形态熵(CME),它通过偏离完美圆形形状,结合参数形态分析和香农熵来实现。我们使用多种不同的正常和肿瘤细胞系在不同的体外微环境中,展示了 CME 的实用性,它可以准确地在多个长度尺度上量化复杂的细胞形态。我们的结果表明,几何约束如何影响 MDA-MB-231 细胞核,MCF-10A 细胞在胶原凝胶上迁移时的新兴相互作用,以及肿瘤球体从增殖到侵袭的关键转变。该分析表明,基于 CME 的方法提供了一种有效且具有物理解释的工具,可在多个长度尺度上实时测量形态。它深入了解细胞迁移,并有助于理解更复杂微环境中不同的行为模式和集体细胞运动。