形态动力学促进癌细胞在 3D 细胞外基质中迁移。
Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix.
机构信息
Department of Physics, Oregon State University, Corvallis, OR, 97331, USA.
Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA.
出版信息
Sci Rep. 2021 Oct 14;11(1):20434. doi: 10.1038/s41598-021-99902-9.
Cell shape is linked to cell function. The significance of cell morphodynamics, namely the temporal fluctuation of cell shape, is much less understood. Here we study the morphodynamics of MDA-MB-231 cells in type I collagen extracellular matrix (ECM). We systematically vary ECM physical properties by tuning collagen concentrations, alignment, and gelation temperatures. We find that morphodynamics of 3D migrating cells are externally controlled by ECM mechanics and internally modulated by Rho/ROCK-signaling. We employ machine learning to classify cell shape into four different morphological phenotypes, each corresponding to a distinct migration mode. As a result, we map cell morphodynamics at mesoscale into the temporal evolution of morphological phenotypes. We characterize the mesoscale dynamics including occurrence probability, dwell time and transition matrix at varying ECM conditions, which demonstrate the complex phenotype landscape and optimal pathways for phenotype transitions. In light of the mesoscale dynamics, we show that 3D cancer cell motility is a hidden Markov process whereby the step size distributions of cell migration are coupled with simultaneous cell morphodynamics. Morphological phenotype transitions also facilitate cancer cells to navigate non-uniform ECM such as traversing the interface between matrices of two distinct microstructures. In conclusion, we demonstrate that 3D migrating cancer cells exhibit rich morphodynamics that is controlled by ECM mechanics, Rho/ROCK-signaling, and regulate cell motility. Our results pave the way to the functional understanding and mechanical programming of cell morphodynamics as a route to predict and control 3D cell motility.
细胞形状与细胞功能有关。细胞形态动力学的意义,即细胞形状的时间波动,理解得要少得多。在这里,我们研究了 MDA-MB-231 细胞在 I 型胶原细胞外基质(ECM)中的形态动力学。我们通过调整胶原浓度、排列和凝胶化温度来系统地改变 ECM 的物理性质。我们发现,3D 迁移细胞的形态动力学受 ECM 力学的外部控制,并受 Rho/ROCK 信号的内部调节。我们采用机器学习将细胞形状分类为四种不同的形态表型,每种表型对应于一种独特的迁移模式。结果,我们将细胞形态动力学在介观尺度上映射到形态表型的时间演化上。我们在不同的 ECM 条件下对介观动力学进行了特征描述,包括出现概率、停留时间和转换矩阵,这些都证明了复杂的表型景观和表型转换的最佳途径。根据介观动力学,我们表明 3D 癌症细胞迁移是一个隐马尔可夫过程,其中细胞迁移的步长分布与细胞形态动力学的同时发生相关。形态表型的转变也有助于癌症细胞在不均匀的 ECM 中导航,例如穿过两个不同微结构基质之间的界面。总之,我们证明了 3D 迁移的癌细胞表现出丰富的形态动力学,这些动力学受 ECM 力学、Rho/ROCK 信号和调节细胞迁移的信号控制。我们的研究结果为理解和机械编程细胞形态动力学作为预测和控制 3D 细胞迁移的途径铺平了道路。