Wang Yuqiang, Zhang Yu, Li Chaozhong, Wei Jinwu, He Bin, Xu Hongjun, Xia Jihao, Luo Xuming, Li Jiahui, Dong Jing, He Wenqing, Yan Zhengren, Yang Wenlong, Ma Fusheng, Chai Guozhi, Yan Peng, Wan Caihua, Han Xiufeng, Yu Guoqiang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Nat Commun. 2024 Mar 7;15(1):2077. doi: 10.1038/s41467-024-46474-7.
Ultrastrong and deep-strong coupling are two coupling regimes rich in intriguing physical phenomena. Recently, hybrid magnonic systems have emerged as promising candidates for exploring these regimes, owing to their unique advantages in quantum engineering. However, because of the relatively weak coupling between magnons and other quasiparticles, ultrastrong coupling is predominantly realized at cryogenic temperatures, while deep-strong coupling remains to be explored. In our work, we achieve both theoretical and experimental realization of room-temperature ultrastrong magnon-magnon coupling in synthetic antiferromagnets with intrinsic asymmetry of magnetic anisotropy. Unlike most ultrastrong coupling systems, where the counter-rotating coupling strength g is strictly equal to the co-rotating coupling strength g, our systems allow for highly tunable g and g. This high degree of freedom also enables the realization of normalized g or g larger than 0.5. Particularly, our experimental findings reveal that the maximum observed g is nearly identical to the bare frequency, with g/ω = 0.963, indicating a close realization of deep-strong coupling within our hybrid magnonic systems. Our results highlight synthetic antiferromagnets as platforms for exploring unconventional ultrastrong and even deep-strong coupling regimes, facilitating the further exploration of quantum phenomena.
超强耦合和深度强耦合是两种蕴含着有趣物理现象的耦合机制。近来,混合磁振子系统因其在量子工程方面的独特优势,成为探索这些机制的颇具潜力的候选对象。然而,由于磁振子与其他准粒子之间的耦合相对较弱,超强耦合主要在低温下实现,而深度强耦合仍有待探索。在我们的工作中,我们在具有磁各向异性固有不对称性的合成反铁磁体中实现了室温下超强磁振子 - 磁振子耦合的理论和实验验证。与大多数超强耦合系统不同,在那些系统中反向旋转耦合强度g严格等于同向旋转耦合强度g,而我们的系统允许g和g高度可调。这种高度的自由度还能实现归一化的g或g大于0.5。特别地,我们的实验结果表明,观测到的最大g几乎与裸频率相同,g/ω = 0.963,这表明在我们的混合磁振子系统中接近实现了深度强耦合。我们的结果突出了合成反铁磁体作为探索非常规超强甚至深度强耦合机制的平台,有助于进一步探索量子现象。