Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA.
Organic and Carbon Electronics Laboratory (ORACEL), North Carolina State University, Raleigh, NC, 27695, USA.
Nat Commun. 2023 Apr 1;14(1):1834. doi: 10.1038/s41467-023-37505-w.
Hybrid magnonic systems are a newcomer for pursuing coherent information processing owing to their rich quantum engineering functionalities. One prototypical example is hybrid magnonics in antiferromagnets with an easy-plane anisotropy that resembles a quantum-mechanically mixed two-level spin system through the coupling of acoustic and optical magnons. Generally, the coupling between these orthogonal modes is forbidden due to their opposite parity. Here we show that the Dzyaloshinskii-Moriya-Interaction (DMI), a chiral antisymmetric interaction that occurs in magnetic systems with low symmetry, can lift this restriction. We report that layered hybrid perovskite antiferromagnets with an interlayer DMI can lead to a strong intrinsic magnon-magnon coupling strength up to 0.24 GHz, which is four times greater than the dissipation rates of the acoustic/optical modes. Our work shows that the DMI in these hybrid antiferromagnets holds promise for leveraging magnon-magnon coupling by harnessing symmetry breaking in a highly tunable, solution-processable layered magnetic platform.
混合磁振子系统因其丰富的量子工程功能而成为一种新兴的相干信息处理方法。一个典型的例子是具有易面各向异性的反铁磁体中的混合磁振子,通过声学和光学磁振子的耦合,类似于量子力学混合的双能级自旋系统。一般来说,由于这些正交模式的宇称相反,它们之间的耦合是被禁止的。在这里,我们表明,在低对称的磁性系统中存在的手性反演不对称相互作用(DMI)可以打破这种限制。我们报告称,具有层间 DMI 的层状混合钙钛矿反铁磁体可以导致高达 0.24GHz 的强固有磁子-磁子耦合强度,这比声子/光子模式的耗散率大四倍。我们的工作表明,这些混合反铁磁体中的 DMI 有望通过利用高度可调谐的溶液处理层状磁性平台中的对称破缺来利用磁子-磁子耦合。