Baranov Denis G, Munkhbat Battulga, Zhukova Elena, Bisht Ankit, Canales Adriana, Rousseaux Benjamin, Johansson Göran, Antosiewicz Tomasz J, Shegai Timur
Department of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden.
Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow, Russia.
Nat Commun. 2020 Jun 1;11(1):2715. doi: 10.1038/s41467-020-16524-x.
Ultrastrong coupling is a distinct regime of electromagnetic interaction that enables a rich variety of intriguing physical phenomena. Traditionally, this regime has been reached by coupling intersubband transitions of multiple quantum wells, superconducting artificial atoms, or two-dimensional electron gases to microcavity resonators. However, employing these platforms requires demanding experimental conditions such as cryogenic temperatures, strong magnetic fields, and high vacuum. Here, we use a plasmonic nanorod array positioned at the antinode of a resonant optical Fabry-Pérot microcavity to reach the ultrastrong coupling (USC) regime at ambient conditions and without the use of magnetic fields. From optical measurements we extract the value of the interaction strength over the transition energy as high as g/ω ~ 0.55, deep in the USC regime, while the nanorod array occupies only ∼4% of the cavity volume. Moreover, by comparing the resonant energies of the coupled and uncoupled systems, we indirectly observe up to ∼10% modification of the ground-state energy, which is a hallmark of USC. Our results suggest that plasmon-microcavity polaritons are a promising platform for room-temperature USC realizations in the optical and infrared ranges, and may lead to the long-sought direct visualization of the vacuum energy modification.
超强耦合是一种独特的电磁相互作用机制,它能引发各种引人入胜的物理现象。传统上,这种机制是通过将多个量子阱的子带间跃迁、超导人造原子或二维电子气与微腔谐振器耦合来实现的。然而,使用这些平台需要苛刻的实验条件,如低温、强磁场和高真空。在此,我们利用位于共振光学法布里 - 珀罗微腔波腹处的等离子体纳米棒阵列,在环境条件下且不使用磁场的情况下达到超强耦合(USC)机制。通过光学测量,我们在USC机制的深度区域提取出相互作用强度与跃迁能量之比高达g/ω ~ 0.55的值,而纳米棒阵列仅占据腔体积的约4%。此外,通过比较耦合和未耦合系统的共振能量,我们间接观察到基态能量高达约10%的修正,这是USC的一个标志。我们的结果表明,等离子体 - 微腔极化激元是在光学和红外波段实现室温USC的一个有前景的平台,并且可能导致长期以来寻求的真空能量修正的直接可视化。