Ashraf Umar, Shi Wanzhong, Zhang Hucai, Anees Aqsa, Jiang Ren, Ali Muhammad, Mangi Hassan Nasir, Zhang Xiaonan
Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, Yunnan, China.
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China.
Sci Rep. 2024 Mar 7;14(1):5659. doi: 10.1038/s41598-024-55250-y.
Geoscientists now identify coal layers using conventional well logs. Coal layer identification is the main technical difficulty in coalbed methane exploration and development. This research uses advanced quantile-quantile plot, self-organizing maps (SOM), k-means clustering, t-distributed stochastic neighbor embedding (t-SNE) and qualitative log curve assessment through three wells (X4, X5, X6) in complex geological formation to distinguish coal from tight sand and shale. Also, we identify the reservoir rock typing (RRT), gas-bearing and non-gas bearing potential zones. Results showed gamma-ray and resistivity logs are not reliable tools for coal identification. Further, coal layers highlighted high acoustic (AC) and neutron porosity (CNL), low density (DEN), low photoelectric, and low porosity values as compared to tight sand and shale. While, tight sand highlighted 5-10% porosity values. The SOM and clustering assessment provided the evidence of good-quality RRT for tight sand facies, whereas other clusters related to shale and coal showed poor-quality RRT. A t-SNE algorithm accurately distinguished coal and was used to make CNL and DEN plot that showed the presence of low-rank bituminous coal rank in study area. The presented strategy through conventional logs shall provide help to comprehend coal-tight sand lithofacies units for future mining.
地球科学家现在使用传统测井曲线来识别煤层。煤层识别是煤层气勘探开发中的主要技术难题。本研究通过复杂地质构造中的三口井(X4、X5、X6),采用先进的分位数-分位数图、自组织映射(SOM)、k均值聚类、t分布随机邻域嵌入(t-SNE)以及定性测井曲线评估,来区分煤与致密砂岩和页岩。此外,我们还识别了储层岩石类型(RRT)、含气和非含气潜在区域。结果表明,伽马射线和电阻率测井曲线不是识别煤的可靠工具。此外,与致密砂岩和页岩相比,煤层的声波(AC)和中子孔隙度(CNL)较高,密度(DEN)、光电和孔隙度值较低。而致密砂岩的孔隙度值为5-10%。SOM和聚类评估为致密砂岩相提供了高质量RRT的证据,而与页岩和煤相关的其他聚类显示出低质量的RRT。t-SNE算法准确地区分了煤,并用于制作CNL和DEN图,显示了研究区域存在低阶烟煤等级。通过传统测井曲线提出的策略将有助于理解未来开采的煤-致密砂岩石相单元。