Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
School of Automation, Guangdong University of Technology, Guangzhou 510006, China.
Math Biosci Eng. 2024 Jan 3;21(2):1857-1871. doi: 10.3934/mbe.2024081.
Bone age assessment plays a vital role in monitoring the growth and development of adolescents. However, it is still challenging to obtain precise bone age from hand radiography due to these problems: 1) Hand bone varies greatly and is always masked by the background; 2) the hand bone radiographs with successive ages offer high similarity. To solve such issues, a region fine-grained attention network (RFGA-Net) was proposed for bone age assessment, where the region aware attention (RAA) module was developed to distinguish the skeletal regions from the background by modeling global spatial dependency; then the fine-grained feature attention (FFA) module was devised to identify similar bone radiographs by recognizing critical fine-grained feature regions. The experimental results demonstrate that the proposed RFGA-Net shows the best performance on the Radiological Society of North America (RSNA) pediatric bone dataset, achieving the mean absolute error (MAE) of 3.34 and the root mean square error (RMSE) of 4.02, respectively.
骨龄评估在监测青少年的生长发育中起着至关重要的作用。然而,由于以下问题,从手部 X 光片中获得精确的骨龄仍然具有挑战性:1)手部骨骼差异很大,并且总是被背景遮挡;2)具有连续年龄的手部骨骼 X 光片具有很高的相似度。为了解决这些问题,提出了一种用于骨龄评估的区域细粒度注意力网络(RFGA-Net),其中开发了区域感知注意力(RAA)模块,通过建模全局空间依赖性来区分骨骼区域和背景;然后设计了细粒度特征注意力(FFA)模块,通过识别关键细粒度特征区域来识别相似的骨骼 X 光片。实验结果表明,所提出的 RFGA-Net 在北美放射学会(RSNA)儿科骨骼数据集上表现出最佳性能,分别达到 3.34 的平均绝对误差(MAE)和 4.02 的均方根误差(RMSE)。