Birri Makota Rutendo, Musenge Eustasius
Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
Front Epidemiol. 2022 Dec 6;2:1029583. doi: 10.3389/fepid.2022.1029583. eCollection 2022.
Age structured sexual mixing patterns have been noted to be associated with HIV prevalence and force of infection. Therefore, this study aimed to estimate the age dependent HIV force of infection using survey cross-sectional data from Zimbabwe.
We fit generalized additive models namely; linear, semi-parametric, non-parametric and non-proportional hazards models. Using the 2005-06, 2010-11 and 2015 Zimbabwe Demographic Health Surveys data. The Akaike Information Criteria was used to select the best model. The best model was then used to estimate the age dependent HIV prevalence and force-of-infection.
Based on birth year cohort-specific prevalence, the female HIV prevalence reaches the highest peak at around 29 years of age, then declines thereafter. Males have a lower cohort specific prevalence between 15 and 30 years than females. Male cohort-specific prevalence slightly decreases between the ages of 33 and 39, then peaks around the age of 40. The cohort-specific FOI is greater in females than in males throughout all age categories. In addition, the cohort-specific HIV FOI peaked at ages 22 and 40 for females and males, respectively. The observed 18-year age difference between the HIV FOI peaks of males and females.
Our model was appealing because we did not assume that the FOI is stationary over time; however, we used serological survey data to distinguish the FOI's age-and-time effect. The cohort-specific FOI peaked 18 years earlier in females than males, indicative of age-mixing patterns. We recommend interventions that target younger females so as to reduce HIV transmission rates.
年龄结构化的性混合模式已被指出与艾滋病毒流行率和感染强度相关。因此,本研究旨在利用津巴布韦的调查横断面数据估计年龄依赖性艾滋病毒感染强度。
我们拟合了广义相加模型,即线性、半参数、非参数和非比例风险模型。使用2005 - 06年、2010 - 11年和2015年津巴布韦人口与健康调查数据。采用赤池信息准则来选择最佳模型。然后使用最佳模型来估计年龄依赖性艾滋病毒流行率和感染强度。
基于出生队列特定的流行率,女性艾滋病毒流行率在29岁左右达到最高峰,此后下降。男性在15至30岁之间的队列特定流行率低于女性。男性队列特定流行率在33至39岁之间略有下降,然后在40岁左右达到峰值。在所有年龄类别中,女性的队列特定感染强度均高于男性。此外,女性和男性的队列特定艾滋病毒感染强度分别在22岁和40岁时达到峰值。观察到男性和女性艾滋病毒感染强度峰值之间存在18岁的年龄差异。
我们的模型很有吸引力,因为我们没有假设感染强度随时间保持不变;然而,我们使用血清学调查数据来区分感染强度的年龄和时间效应。队列特定感染强度在女性中比男性早18年达到峰值,这表明了年龄混合模式。我们建议针对年轻女性的干预措施,以降低艾滋病毒传播率。