Suppr超能文献

理解网络结构对不同尺度下航空旅行模式的影响。

Understanding the impact of network structure on air travel pattern at different scales.

机构信息

Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.

Changi Airport International Pte. Ltd. (CAI), Singapore, Republic of Singapore.

出版信息

PLoS One. 2024 Mar 8;19(3):e0299897. doi: 10.1371/journal.pone.0299897. eCollection 2024.

Abstract

This study examines the global air travel demand pattern using complex network analysis. Using the data for the top 50 airports based on passenger volume rankings, we investigate the relationship between network measures of nodes (airports) in the global flight network and their passenger volume. The analysis explores the network measures at various spatial scales, from individual airports to metropolitan areas and countries. Different attributes, such as flight route length and the number of airlines, are considered in the analysis. Certain attributes are found to be more relevant than others, and specific network measure models are found to better capture the dynamics of global air travel demand than others. Among the models, PageRank is found to be the most correlated with total passenger volume. Moreover, distance-based measures perform worse than the ones emphasising the number of airlines, particularly those counting the number of airlines operating a route, including codeshare. Using the PageRank score weighted by the number of airlines, we find that airports in Asian cities tend to have more traffic than expected, while European and North American airports have the potential to attract more passenger volume given their connectivity pattern. Additionally, we combine the network measures with socio-economic variables such as population and GDP to show that the network measures could greatly augment the traditional approaches to modelling and predicting air travel demand. We'll also briefly discuss the implications of the findings in this study for airport planning and airline industry strategy.

摘要

本研究使用复杂网络分析考察了全球航空旅行需求模式。利用基于客流量排名的前 50 大机场的数据,我们研究了全球航班网络中节点(机场)的网络度量与其客流量之间的关系。分析探索了从单个机场到大都市区和国家等不同空间尺度的网络度量。分析中考虑了不同的属性,如航班航线长度和航空公司数量。研究发现,某些属性比其他属性更为重要,某些特定的网络度量模型比其他模型更能捕捉全球航空旅行需求的动态。在这些模型中,PageRank 与总客流量的相关性最高。此外,基于距离的度量表现不如强调航空公司数量的度量,特别是那些计算运营航线的航空公司数量的度量,包括代码共享。使用航空公司数量加权的 PageRank 得分,我们发现亚洲城市的机场客流量往往超过预期,而欧洲和北美机场则具有更大的潜力吸引更多的客流量,因为它们的连接模式。此外,我们将网络度量与人口和 GDP 等社会经济变量相结合,表明网络度量可以极大地增强传统的航空旅行需求建模和预测方法。我们还将简要讨论本研究对机场规划和航空公司行业战略的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbab/10923468/2e5e66f4cac6/pone.0299897.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验