Teaching Hospital, Nagoda, Kalutara, Sri Lanka.
Department of Mathematics and Statistics, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.
PLoS One. 2024 Mar 8;19(3):e0299953. doi: 10.1371/journal.pone.0299953. eCollection 2024.
Dengue poses a significant and multifaceted public health challenge in Sri Lanka, encompassing both preventive and curative aspects. Accurate dengue incidence forecasting is pivotal for effective surveillance and disease control. To address this, we developed an Autoregressive Integrated Moving Average (ARIMA) model tailored for predicting weekly dengue cases in the Colombo district. The modeling process drew on comprehensive weekly dengue fever data from the Weekly Epidemiological Reports (WER), spanning January 2015 to August 2020. Following rigorous model selection, the ARIMA (2,1,0) model, augmented with an autoregressive component (AR) of order 16, emerged as the best-fitted model. It underwent initial calibration and fine-tuning using data from January 2015 to August 2020, and was validated against independent 2000 data. Selection criteria included parameter significance, the Akaike Information Criterion (AIC), and Schwarz Bayesian Information Criterion (SBIC). Importantly, the residuals of the ARIMA model conformed to the assumptions of randomness, constant variance, and normality affirming its suitability. The forecasts closely matched observed dengue incidence, offering a valuable tool for public health decision-makers. However, an increased percentage error was noted in late 2020, likely attributed to factors including potential underreporting due to COVID-19-related disruptions amid rising dengue cases. This research contributes to the critical task of managing dengue outbreaks and underscores the dynamic challenges posed by external influences on disease surveillance.
在斯里兰卡,登革热是一个重大的、多方面的公共卫生挑战,涉及预防和治疗两个方面。准确预测登革热的发病率对于有效的监测和疾病控制至关重要。为了解决这个问题,我们开发了一个适用于预测科伦坡地区每周登革热病例的自回归综合移动平均(ARIMA)模型。该模型的建立过程利用了来自《每周流行病学报告》(WER)的全面的每周登革热数据,时间跨度为 2015 年 1 月至 2020 年 8 月。经过严格的模型选择,带有 16 阶自回归分量(AR)的 ARIMA(2,1,0)模型被选为最佳拟合模型。该模型使用 2015 年 1 月至 2020 年 8 月的数据进行了初步校准和微调,并使用 2000 年的独立数据进行了验证。选择标准包括参数显著性、赤池信息量准则(AIC)和施瓦茨贝叶斯信息量准则(SBIC)。重要的是,ARIMA 模型的残差符合随机性、常数方差和正态性的假设,这证实了其适用性。预测结果与实际登革热发病率密切匹配,为公共卫生决策者提供了一个有价值的工具。然而,在 2020 年底,注意到百分比误差增加,这可能归因于由于与 COVID-19 相关的中断导致的潜在漏报,同时登革热病例也在上升。这项研究有助于管理登革热爆发的关键任务,并强调了外部因素对疾病监测的动态挑战。