Suppr超能文献

一种用于预测巴西登革热病例概率性流行范围的统计模型。

A statistical model for forecasting probabilistic epidemic bands for dengue cases in Brazil.

作者信息

Picinini Freitas Laís, da Cruz Ferreira Danielle Andreza, Lana Raquel Martins, Câmara Daniel Cardoso Portela, Portella Tatiana P, Carvalho Marilia Sá, Gouveia Ayrton Sena, de Almeida Iasmim Ferreira, Araujo Eduardo Correa, Vacaro Luã Bida, Ganem Fabiana, Cruz Oswaldo Gonçalves, Coelho Flávio Codeço, Codeço Claudia Torres, Carvalho Luiz Max, Bastos Leonardo Soares

机构信息

Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.

Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.

出版信息

Infect Dis Model. 2025 Aug 5;10(4):1479-1487. doi: 10.1016/j.idm.2025.07.014. eCollection 2025 Dec.

Abstract

Dengue is a vector-borne disease and a major public health concern in Brazil. Its continuing and rising burden has led the Brazilian Ministry of Health to request for modelling efforts to aid in the preparedness and response to the disease. In this context, we propose a Bayesian forecasting model based on historical data to predict the number of cases 52 weeks ahead for the 118 health districts of Brazil. We leverage the predictions to build probabilistic epidemics bands to be used for dengue monitoring. We define four disjoint probabilistic bands (≤50% (50%, 75%] (75%, 90%], and 90%), based on the percentiles of the predicted cases distribution and interpreted according to the historical number of cases and past occurrence probability (below the median, typical; moderately high, fairly typical; fairly high, atypical; exceptionally high, very atypical). We performed out-of-sample validation for 2022-2023 and 2023-2024 and forecasted 2024-2025. In the 2022-2023 and 2023-2024 seasons, the epidemic bands followed the observed cases' curve shape, with a sharp increase after January and a decline after the peak around April. In 2022-2023, the observed number of cases (1,436,034) was slightly above the estimated 75% percentile (1,405,191), being classified as "fairly high, atypical". Most health districts in South Brazil showed exceptionally high numbers of cases during this season. The situation worsened in 2023-2024 and the observed number of cases (6,454,020) was way above the 90% percentile (2,221,557), characterising an "exceptionally high, very atypical" season. For the 2024-2025 season, we estimated a median number of cases of 1,526,523 (maximum value for the "below the median, typical" probabilistic epidemic band. The maximum estimated values for the upper bands were 2,213,282 (moderately high, fairly typical) and 3,803,898 (fairly high, atypical) with the upper limits of the probabilistic epidemic bands of 1,452,359. Probabilistic epidemic bands serve as a valuable monitoring tool by enabling prospective comparisons between observed case curves and historical epidemic patterns, facilitating the assessment of ongoing outbreaks about past occurrences.

摘要

登革热是一种媒介传播疾病,也是巴西主要的公共卫生问题。其持续且不断加重的负担促使巴西卫生部要求开展建模工作,以协助疾病的防范和应对。在此背景下,我们基于历史数据提出了一种贝叶斯预测模型,用于预测巴西118个卫生区未来52周的病例数。我们利用这些预测结果构建概率性流行区间,用于登革热监测。我们根据预测病例分布的百分位数定义了四个不相交的概率区间(≤50%、(50%, 75%]、(75%, 90%]和>90%),并根据病例的历史数量和过去的发生概率进行解释(低于中位数,典型;中等偏高,相当典型;相当高,非典型;异常高,非常非典型)。我们对2022 - 2023年和2023 - 2024年进行了样本外验证,并对2024 - 2025年进行了预测。在2022 - 2023年和2023 - 2024年季节,流行区间与观察到的病例曲线形状相符,1月后病例数急剧增加,4月左右达到峰值后下降。在2022 - 2023年,观察到的病例数(1,436,034)略高于估计的第75百分位数(1,405,191),被归类为“相当高,非典型”。巴西南部的大多数卫生区在该季节病例数异常高。2023 - 2024年情况恶化,观察到的病例数(6,454,020)远高于第90百分位数(2,221,557),呈现出“异常高,非常非典型”的季节特征。对于2024 - 2025年季节,我们估计病例数中位数为1,526,523(“低于中位数,典型”概率性流行区间的最大值)。较高区间的最大估计值分别为2,213,282(中等偏高,相当典型)和3,803,898(相当高,非典型),概率性流行区间的上限为1,452,359。概率性流行区间是一种有价值的监测工具,通过对观察到的病例曲线与历史流行模式进行前瞻性比较,有助于评估当前疫情与过去疫情的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/262d/12359213/acc69922b516/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验