Suppr超能文献

基于临床样本中适体-抗原识别的电化学动力学分析和机器学习的高精度病毒检测。

High-Precision Viral Detection Using Electrochemical Kinetic Profiling of Aptamer-Antigen Recognition in Clinical Samples and Machine Learning.

机构信息

Department of Engineering Physics, McMaster University, Canada.

Department of Biochemistry and Biomedical Sciences, McMaster University, Canada.

出版信息

Angew Chem Int Ed Engl. 2024 May 13;63(20):e202400413. doi: 10.1002/anie.202400413. Epub 2024 Apr 9.

Abstract

High-precision viral detection at point of need with clinical samples plays a pivotal role in the diagnosis of infectious diseases and the control of a global pandemic. However, the complexity of clinical samples that often contain very low viral concentrations makes it a huge challenge to develop simple diagnostic devices that do not require any sample processing and yet are capable of meeting performance metrics such as very high sensitivity and specificity. Herein we describe a new single-pot and single-step electrochemical method that uses real-time kinetic profiling of the interaction between a high-affinity aptamer and an antigen on a viral surface. This method generates many data points per sample, which when combined with machine learning, can deliver highly accurate test results in a short testing time. We demonstrate this concept using both SARS-CoV-2 and Influenza A viruses as model viruses with specifically engineered high-affinity aptamers. Utilizing this technique to diagnose COVID-19 with 37 real human saliva samples results in a sensitivity and specificity of both 100 % (27 true negatives and 10 true positives, with 0 false negative and 0 false positive), which showcases the superb diagnostic precision of this method.

摘要

在需要的地方,对临床样本进行高精度的病毒检测,在传染病诊断和全球大流行控制方面发挥着关键作用。然而,临床样本的复杂性往往导致其中病毒浓度非常低,这使得开发简单的诊断设备成为一个巨大的挑战,这些设备不需要任何样本处理,但又要能够满足非常高的灵敏度和特异性等性能指标。在此,我们描述了一种新的单管单步电化学方法,该方法利用高亲和力适体与病毒表面抗原之间相互作用的实时动力学分析。该方法为每个样本生成多个数据点,当与机器学习结合使用时,可以在短时间内获得非常准确的测试结果。我们使用 SARS-CoV-2 和甲型流感病毒作为模型病毒,以及专门设计的高亲和力适体,证明了这一概念。利用该技术对 37 份真实的人唾液样本进行 COVID-19 诊断,灵敏度和特异性均为 100%(27 个真阴性和 10 个真阳性,无假阴性和假阳性),展示了该方法的卓越诊断精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验