Suppr超能文献

探索DNA链扩散到纳米多孔结构中以建立通用电化学生物传感器。

Exploring the diffusion of DNA strands into nanoporous structures for establishing a universal electrochemical biosensor.

作者信息

Zhao Cong-Lin, Gao Runlei, Niu Yinzheng, Cai Bin, Zhu Ye

机构信息

School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China

Shenzhen Research Institute of Shandong University Shenzhen 518000 China.

出版信息

Chem Sci. 2024 Dec 30;16(5):2420-2428. doi: 10.1039/d4sc05833j. eCollection 2025 Jan 29.

Abstract

The development of universal electrochemical sensing platforms with high sensitivity and specificity is of great significance for advancing practical disease diagnostic methods and devices. Exploring the structural properties of electrode materials and their interaction with biomolecules is essential to developing novel and distinctive analytical approaches. Here, we innovatively investigated the effect of DNA length and configuration on DNA molecule transfer into the nanostructure of a nanoporous gold (NPG) electrode. The NPG electrode can not only distinguish and quantify short DNA strands but can also prevent the diffusion of long DNA, thereby minimizing or eliminating background interference. Leveraging these findings, we developed a universal DNA-based NPG electrochemical biosensing platform for the detection of different types of biomolecules. As a proof-of-concept, this sensing platform was integrated with nuclease-assisted target-recycling recognition and amplification reactions to achieve sensitive and specific detection of single-stranded DNA, microRNA-21, and carcino-embryonic antigen, with detection limits of 4.09, 27.4, and 0.28 fM, respectively. The demonstrated universality, sensitivity, specificity, and capability for analyzing complex samples ensure a comprehensive and robust detection approach for nucleic acid-based molecular diagnosis.

摘要

开发具有高灵敏度和特异性的通用电化学传感平台对于推进实用的疾病诊断方法和设备具有重要意义。探索电极材料的结构特性及其与生物分子的相互作用对于开发新颖独特的分析方法至关重要。在此,我们创新性地研究了DNA长度和构型对DNA分子转移到纳米多孔金(NPG)电极纳米结构中的影响。NPG电极不仅可以区分和定量短DNA链,还可以阻止长DNA的扩散,从而将背景干扰降至最低或消除。利用这些发现,我们开发了一种基于DNA的通用NPG电化学生物传感平台,用于检测不同类型的生物分子。作为概念验证,该传感平台与核酸酶辅助的靶标循环识别和扩增反应相结合,实现了对单链DNA、微小RNA-21和癌胚抗原的灵敏特异检测,检测限分别为4.09、27.4和0.28 fM。所展示的通用性、灵敏度、特异性以及分析复杂样品的能力确保了基于核酸的分子诊断的全面而稳健的检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b81e/11778264/9f8664290cbd/d4sc05833j-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验