Miyata Tomohiro, Sato Yohei K, Kawagoe Yoshiaki, Shirasu Keiichi, Wang Hsiao-Fang, Kumagai Akemi, Kinoshita Sora, Mizukami Masashi, Yoshida Kaname, Huang Hsin-Hui, Okabe Tomonaga, Hagita Katsumi, Mizoguchi Teruyasu, Jinnai Hiroshi
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
Department of Aerospace Engineering, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
Nat Commun. 2024 Mar 8;15(1):1898. doi: 10.1038/s41467-024-46138-6.
The mechanisms underlying the influence of the surface chemistry of inorganic materials on polymer structures and fracture behaviours near adhesive interfaces are not fully understood. This study demonstrates the first clear and direct evidence that molecular surface segregation and cross-linking of epoxy resin are driven by intermolecular forces at the inorganic surfaces alone, which can be linked directly to adhesive failure mechanisms. We prepare adhesive interfaces between epoxy resin and silicon substrates with varying surface chemistries (OH and H terminations) with a smoothness below 1 nm, which have different adhesive strengths by ~13 %. The epoxy resins within sub-nanometre distance from the surfaces with different chemistries exhibit distinct amine-to-epoxy ratios, cross-linked network structures, and adhesion energies. The OH- and H-terminated interfaces exhibit cohesive failure and interfacial delamination, respectively. The substrate surface chemistry impacts the cross-linked structures of the epoxy resins within several nanometres of the interfaces and the adsorption structures of molecules at the interfaces, which result in different fracture behaviours and adhesive strengths.
无机材料表面化学对聚合物结构及黏附界面附近断裂行为的影响机制尚未完全明晰。本研究首次提供了清晰直接的证据,表明环氧树脂的分子表面偏析和交联仅由无机表面的分子间作用力驱动,这可直接与黏附失效机制相关联。我们制备了环氧树脂与具有不同表面化学性质(OH和H端基)且平整度低于1纳米的硅基底之间的黏附界面,其黏附强度相差约13%。距不同化学性质表面亚纳米距离内的环氧树脂呈现出不同的胺与环氧比例、交联网络结构及黏附能。OH端基和H端基界面分别呈现内聚破坏和界面分层。基底表面化学性质影响界面几纳米范围内环氧树脂的交联结构以及界面处分子的吸附结构,进而导致不同的断裂行为和黏附强度。