Abylgazina Leila, Senkovska Irena, Maliuta Mariia, Bachetzky Christopher, Rauche Marcus, Pöschel Kathrin, Schmidt Johannes, Isaacs Mark, Morgan David, Otyepka Michal, Otyepkova Eva, Mendt Matthias, More Yogeshwar D, Buschbeck Robin, Schneemann Andreas, Synytska Alla, Pöppl Andreas, Eng Lukas M, Tan Jin-Chong, Brunner Eike, Kaskel Stefan
Chair of Inorganic Chemistry I, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
Chair of Bioanalytical Chemistry, Technische Universität Dresden Bergstr. 66 01069 Dresden Germany.
Chem Sci. 2025 Mar 6;16(15):6402-6417. doi: 10.1039/d4sc08223k. eCollection 2025 Apr 9.
A unique feature of flexible metal-organic frameworks (MOFs) is their ability to respond dynamically towards molecular stimuli by structural transitions, resulting in pore-opening and closing processes. One of the most intriguing modes is the "gating", where the material transforms from the dense to the porous state. The conditions required for the solid phase structural transition are controlled by the kinetic barriers, including nucleation of the new phase commencing on the crystallite's outer surface. Thus, surface deformation may influence the nucleation, enabling deliberate tailoring of the responsivity. In the present contribution, we investigate how chemical surface treatments (surface deformation) affect the gate opening characteristics of a typical representative of gate pressure MOFs, DUT-8(Ni) ([Ni(ndc)(dabco)] , ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]octane). A combination of various complementary advanced characterization techniques, such as NMR, nanoFTIR, terahertz, XPS, EPR spectroscopies, and inverse gas chromatography, are applied to unravel the changes in surface energy and mechanism of surface deformation.
柔性金属有机框架材料(MOFs)的一个独特特性是它们能够通过结构转变对分子刺激做出动态响应,从而导致孔的开合过程。其中最引人入胜的模式之一是“门控”,即材料从致密状态转变为多孔状态。固相结构转变所需的条件由动力学障碍控制,包括在微晶外表面开始的新相的成核。因此,表面变形可能会影响成核,从而能够有意调整响应性。在本论文中,我们研究了化学表面处理(表面变形)如何影响门压MOFs的典型代表DUT-8(Ni)([Ni(ndc)(dabco)],ndc = 2,6-萘二甲酸,dabco = 1,4-二氮杂双环[2.2.2]辛烷)的门打开特性。我们应用了多种互补的先进表征技术,如核磁共振(NMR)、纳米傅里叶变换红外光谱(nanoFTIR)、太赫兹光谱、X射线光电子能谱(XPS)、电子顺磁共振(EPR)光谱和反相气相色谱,以揭示表面能的变化和表面变形的机制。