Suppr超能文献

视网膜光异构化与光适应和暗适应的菌紫质及其初始光产物中的抗衡离子质子化作用的比较。

Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct.

机构信息

Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.

出版信息

Nat Commun. 2024 Mar 8;15(1):2136. doi: 10.1038/s41467-024-46061-w.

Abstract

Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as "K". We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics.

摘要

50 多年前发现的菌紫质是第一个被识别和研究最多的微生物视蛋白。作为一种光激活质子泵,它代表了典型的离子泵系统。在这里,我们将细菌视紫红质的光适应和暗适应形式的光化学动力学与第一个已知的亚稳态光循环中间体“K”进行了比较。我们观察到,在黑暗中,生物活性全反式 15-反式到 13-顺式、15-顺式的视黄醛进行热双异构化后,光化学过程甚至比前一种的~0.5 ps 衰减更快,表现出弹道波包曲线交叉到基态。相比之下,含有 13-顺式、15-反式发色团的 K 的光激发导致明显的多指数激发态衰减,包括更慢的阶段。旨在解释这些结果的QM/MM 计算强调了质子化的关键作用,表明经典的四极子抗衡离子模型不能很好地再现光谱数据和动力学。ASP212 的单质子化纠正了差异,并预测三重基态结构异质性与实验观察一致。这些发现促使人们重新评估细菌视紫红质中抗衡离子的质子化,并有助于更广泛地理解其光化学动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a83/10923925/3b80db031088/41467_2024_46061_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验