Suppr超能文献

细菌视紫红质质子泵循环的分子动力学研究

Molecular dynamics study of the proton pump cycle of bacteriorhodopsin.

作者信息

Zhou F, Windemuth A, Schulten K

机构信息

Beckman Institute, University of Illinois, Urbana-Champaign 61801.

出版信息

Biochemistry. 1993 Mar 9;32(9):2291-306. doi: 10.1021/bi00060a022.

Abstract

Retinal isomerization reactions, which are functionally important in the proton pump cycle of bacteriorhodopsin, were studied by molecular dynamics simulations performed on the complete protein. Retinal isomerizations were simulated in situ to account for the effects of the retinal-protein interactions. The protein structure employed was that described in Nonella et al. [Nonella, M., Windemuth, A., & Schulten, K. (1991) Photochem. Photobiol. 54, 937-948]. We investigated two mechanisms suggested previously for the proton pump cycle, the 13-cis isomerization model (C-T model) and the 13,14-dicis isomerization model. According to these models, retinal undergoes an all-trans-->13-cis or an all-trans-->13,14-dicis photoisomerization as the primary step of the pump cycle. From the simulations emerged a consistent picture of isomerization reactions and their control through the retinal-protein interactions which favors the 13,14-dicis isomerization model. Electrostatic interactions between the protonated Schiff base and its counterion are found to direct the stereochemistry of retinal in the photocycle: this and other interactions steer retinal toward the 13,14-dicis geometry in the primary photoreaction, toward the 13-cis geometry after its deprotonation, and to the all-trans isomeric form after its reprotonation. We also propose a catalytic mechanism involving hydrogen bonding of the Schiff base to main chain oxygen atoms of Val-49 and Thr-89 for the 13-cis-->all-trans thermal reisomerization of retinal. The all-trans-->13-cis primary photoreaction required by the "C-T" model was found to be inhibited by the Schiff base-counterion interaction, but the possibility of such a reaction can not be excluded. In order to investigate the "C-T" model, we enforced an all-trans-->13-cis photoisomerization in a simulation and monitored the subsequent protein conformational changes. The effects of internal water molecules on retinal isomerization reactions were studied by placing 16 water molecules in the proton conduction channel. The results indicate that water affects the nature of the Schiff base counterion and the nature of the primary photoreaction. Water chains, formed between positively and negatively charged protein groups in the proton conduction channel, are suggested to be involved in the reprotonation and deprotonation of retinal.

摘要

视黄醛异构化反应在细菌视紫红质的质子泵循环中具有重要功能,我们通过对完整蛋白质进行分子动力学模拟来研究该反应。视黄醛异构化反应在原位进行模拟,以考虑视黄醛 - 蛋白质相互作用的影响。所采用的蛋白质结构是诺内拉等人[诺内拉,M.,温德穆特,A.,& 舒尔滕,K.(1991年)《光化学与光生物学》54卷,937 - 948页]所描述的结构。我们研究了先前提出的质子泵循环的两种机制,即13 - 顺式异构化模型(C - T模型)和13,14 - 二顺式异构化模型。根据这些模型,视黄醛在泵循环的第一步经历全反式→13 - 顺式或全反式→13,14 - 二顺式光异构化。从模拟中得出了异构化反应及其通过视黄醛 - 蛋白质相互作用进行控制的一致图景,这有利于13,14 - 二顺式异构化模型。发现质子化席夫碱与其抗衡离子之间的静电相互作用在光循环中指导视黄醛的立体化学:这种相互作用以及其他相互作用在初级光反应中将视黄醛导向13,14 - 二顺式构型,在其去质子化后导向13 - 顺式构型,并在其再质子化后导向全反式异构体形式。我们还提出了一种催化机制,涉及席夫碱与缬氨酸 - 49和苏氨酸 - 89的主链氧原子形成氢键,用于视黄醛的13 - 顺式→全反式热异构化。发现“C - T”模型所需的全反式→13 - 顺式初级光反应受到席夫碱 - 抗衡离子相互作用的抑制,但不能排除这种反应的可能性。为了研究“C - T”模型,我们在模拟中强制进行全反式→13 - 顺式光异构化,并监测随后的蛋白质构象变化。通过在质子传导通道中放置16个水分子来研究内部水分子对视黄醛异构化反应的影响。结果表明,水影响席夫碱抗衡离子的性质和初级光反应的性质。质子传导通道中带正电和带负电的蛋白质基团之间形成的水链被认为参与了视黄醛的再质子化和去质子化过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验