Kong Zhengyang, Boahen Elvis K, Kim Dong Jun, Li Fenglong, Kim Joo Sung, Kweon Hyukmin, Kim So Young, Choi Hanbin, Zhu Jin, Bin Ying Wu, Kim Do Hwan
Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Nat Commun. 2024 Mar 8;15(1):2129. doi: 10.1038/s41467-024-46334-4.
The development of advanced materials capable of autonomous self-healing and mechanical stimulus sensing in aquatic environments holds great promise for applications in underwater soft electronics, underwater robotics, and water-resistant human-machine interfaces. However, achieving superior autonomous self-healing properties and effective sensing simultaneously in an aquatic environment is rarely feasible. Here, we present an ultrafast underwater molecularly engineered self-healing piezo-ionic elastomer inspired by the cephalopod's suckers, which possess self-healing properties and mechanosensitive ion channels. Through strategic engineering of hydrophobic C-F groups, hydrolytic boronate ester bonds, and ions, the material achieves outstanding self-healing efficiencies, with speeds of 94.5% (9.1 µm/min) in air and 89.6% (13.3 µm/min) underwater, coupled with remarkable pressure sensitivity (18.1 kPa) for sensing performance. Furthermore, integration of this mechanosensitive device into an underwater submarine for signal transmission and light emitting diode modulation demonstrates its potential for underwater robotics and smarter human-machine interactions.
开发能够在水生环境中自主自愈和机械刺激传感的先进材料,在水下软电子、水下机器人和防水人机界面的应用中具有巨大潜力。然而,在水生环境中同时实现卓越的自主自愈性能和有效传感很少是可行的。在此,我们展示了一种受头足类动物吸盘启发的超快水下分子工程自愈合压电离子弹性体,头足类动物吸盘具有自愈特性和机械敏感离子通道。通过对疏水性C-F基团、水解硼酸酯键和离子进行策略性工程设计,该材料实现了出色的自愈效率,在空气中的自愈速度为94.5%(9.1 µm/min),在水下为89.6%(13.3 µm/min),同时具有出色的压力敏感性(18.1 kPa)用于传感性能。此外,将这种机械敏感装置集成到水下潜艇中用于信号传输和发光二极管调制,证明了其在水下机器人和更智能人机交互方面的潜力。