Ren Xueyang, Zhu Xuefei, Shao Xiaodong, Yang Wen, Meng Yanmei, Chen Shiyu, Wang Yannan, Li Jianqing, Jiang Qin, Hu Benhui
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China.
ACS Nano. 2025 May 20;19(19):18586-18597. doi: 10.1021/acsnano.5c02762. Epub 2025 May 6.
Elevated intraocular pressure (IOP) is a major risk factor for blindness in glaucoma patients, highlighting the critical need for continuous IOP monitoring. While traditional transpalpebral tonometers (TTs) circumvent corneal contact by adopting Goldmann applanation principles through impulsive corneal flattening forces, their measurement accuracy is inherently compromised by eyelid-induced cushion effects. In contrast, parallel-plate capacitive sensors employ constant compressive loading upon the eyelid, achieving palpebral compaction to mitigate the cushion effects. More recently, ion-pump-based capacitive sensors have emerged as promising alternatives, particularly due to their enhanced sensitivity. Nevertheless, these sensors exhibit sharp sensitivity deterioration at extended measurement ranges (0-10 kPa). This operational constraint originates from the strong hydrogen bond energies (between confining matrices and ions) and rigid block copolymer matrices' steric hindrance. To address these limitations, we developed a transpalpebral tonometer featuring low-energy-barrier ion pumps, incorporating (3-aminopropyl)triethoxysilane (APTES)-silanized liquid metal nanoparticles (LM NPs) as confining matrices and an ionic liquid as an ion donor. The low-energy barrier arises from (1) weaker hydrogen bonds between the N-H of APTES and the F of the ionic liquid and (2) reduced crystallinity in the elastomeric matrices induced by LM NPs. Our sensor achieves a sensitivity of 24.88 kPa with maintained linearity over 0-85 kPa. In vivo animal trials over 120 min validated its continuous IOP monitoring capability, reliably detecting elevated IOP states and demonstrating clinical potential for glaucoma management.
眼内压(IOP)升高是青光眼患者失明的主要危险因素,这凸显了持续监测IOP的迫切需求。传统的经睑眼压计(TTs)通过脉冲角膜压平力采用戈德曼压平原理来避免角膜接触,但其测量精度因眼睑引起的缓冲效应而受到固有影响。相比之下,平行板电容式传感器对眼睑施加恒定的压缩载荷,实现睑板压实以减轻缓冲效应。最近,基于离子泵的电容式传感器已成为有前景的替代方案,特别是由于其增强的灵敏度。然而,这些传感器在扩展测量范围(0 - 10 kPa)时表现出灵敏度急剧下降。这种操作限制源于强氢键能(限制基质与离子之间)和刚性嵌段共聚物基质的空间位阻。为了解决这些限制,我们开发了一种具有低能垒离子泵的经睑眼压计,其包含(3 - 氨丙基)三乙氧基硅烷(APTES)硅烷化的液态金属纳米颗粒(LM NPs)作为限制基质和离子液体作为离子供体。低能垒源于(1)APTES的N - H与离子液体的F之间较弱的氢键,以及(2)LM NPs诱导的弹性体基质中结晶度的降低。我们的传感器在0 - 85 kPa范围内实现了24.88 kPa的灵敏度并保持线性。120分钟的体内动物试验验证了其连续监测IOP的能力,可靠地检测到IOP升高状态,并展示了在青光眼管理中的临床潜力。