Institute for Computational Biomedicine, RWTH Aachen University, Aachen, Germany.
Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany.
Sci Rep. 2024 Mar 8;14(1):5725. doi: 10.1038/s41598-024-55577-6.
The development of reliable mortality risk stratification models is an active research area in computational healthcare. Mortality risk stratification provides a standard to assist physicians in evaluating a patient's condition or prognosis objectively. Particular interest lies in methods that are transparent to clinical interpretation and that retain predictive power once validated across diverse datasets they were not trained on. This study addresses the challenge of consolidating numerous ICD codes for predictive modeling of ICU mortality, employing a hybrid modeling approach that integrates mechanistic, clinical knowledge with mathematical and machine learning models . A tree-structured network connecting independent modules that carry clinical meaning is implemented for interpretability. Our training strategy utilizes graph-theoretic methods for data analysis, aiming to identify the functions of individual black-box modules within the tree-structured network by harnessing solutions from specific max-cut problems. The trained model is then validated on external datasets from different hospitals, demonstrating successful generalization capabilities, particularly in binary-feature datasets where label assessment involves extrapolation.
在计算医疗保健领域,开发可靠的死亡率风险分层模型是一个活跃的研究领域。死亡率风险分层为医生提供了一个客观评估患者病情或预后的标准。特别感兴趣的是那些对临床解释透明的方法,以及在经过未训练的不同数据集验证后仍保留预测能力的方法。本研究解决了整合大量 ICD 代码以预测 ICU 死亡率的挑战,采用了一种混合建模方法,将机械、临床知识与数学和机器学习模型相结合。为了实现可解释性,实现了一个连接具有临床意义的独立模块的树状网络。我们的训练策略利用图论方法进行数据分析,旨在通过利用特定最大切割问题的解决方案来识别树状网络中各个黑盒模块的功能。然后,将训练好的模型在来自不同医院的外部数据集上进行验证,证明了其具有成功的泛化能力,特别是在标签评估涉及外推的二进制特征数据集上。