Suppr超能文献

系统生物学中基于机制模型和机器学习方法的结合——系统文献综述。

Combined mechanistic modeling and machine-learning approaches in systems biology - A systematic literature review.

机构信息

Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italia.

Department of Electrical Engineering and Information Technology, Università degli Studi di Napoli Federico II, Napoli, 80125, Italy.

出版信息

Comput Methods Programs Biomed. 2023 Oct;240:107681. doi: 10.1016/j.cmpb.2023.107681. Epub 2023 Jun 17.

Abstract

BACKGROUND AND OBJECTIVE

Mechanistic-based Model simulations (MM) are an effective approach commonly employed, for research and learning purposes, to better investigate and understand the inherent behavior of biological systems. Recent advancements in modern technologies and the large availability of omics data allowed the application of Machine Learning (ML) techniques to different research fields, including systems biology. However, the availability of information regarding the analyzed biological context, sufficient experimental data, as well as the degree of computational complexity, represent some of the issues that both MMs and ML techniques could present individually. For this reason, recently, several studies suggest overcoming or significantly reducing these drawbacks by combining the above-mentioned two methods. In the wake of the growing interest in this hybrid analysis approach, with the present review, we want to systematically investigate the studies available in the scientific literature in which both MMs and ML have been combined to explain biological processes at genomics, proteomics, and metabolomics levels, or the behavior of entire cellular populations.

METHODS

Elsevier Scopus®, Clarivate Web of Science™ and National Library of Medicine PubMed® databases were enquired using the queries reported in Table 1, resulting in 350 scientific articles.

RESULTS

Only 14 of the 350 documents returned by the comprehensive search conducted on the three major online databases met our search criteria, i.e. present a hybrid approach consisting of the synergistic combination of MMs and ML to treat a particular aspect of systems biology.

CONCLUSIONS

Despite the recent interest in this methodology, from a careful analysis of the selected papers, it emerged how examples of integration between MMs and ML are already present in systems biology, highlighting the great potential of this hybrid approach to both at micro and macro biological scales.

摘要

背景与目的

基于机制的模型模拟(MM)是一种有效的方法,通常用于研究和学习目的,以更好地研究和理解生物系统的固有行为。现代技术的最新进展和大量组学数据的可用性使得机器学习(ML)技术能够应用于不同的研究领域,包括系统生物学。然而,分析生物背景的信息可用性、足够的实验数据以及计算复杂性的程度,都是 MM 和 ML 技术各自可能存在的一些问题。因此,最近,一些研究建议通过结合上述两种方法来克服或显著减少这些缺点。鉴于对这种混合分析方法的兴趣日益浓厚,我们在本次综述中,希望系统地调查科学文献中现有的研究,这些研究将 MM 和 ML 结合起来,以解释基因组学、蛋白质组学和代谢组学水平的生物学过程,或整个细胞群体的行为。

方法

在 Elsevier Scopus®、Clarivate Web of Science™ 和美国国家医学图书馆 PubMed®数据库中,使用表 1 中报告的查询进行查询,共得到 350 篇科学文章。

结果

在对这三个主要在线数据库进行的全面搜索中,返回的 350 篇文献中,只有 14 篇符合我们的搜索标准,即提出了一种混合方法,该方法通过协同组合 MM 和 ML 来处理系统生物学的特定方面。

结论

尽管最近对这种方法学的兴趣浓厚,但从对所选论文的仔细分析中可以看出,在系统生物学中已经存在 MM 和 ML 之间的整合示例,突出了这种混合方法在微观和宏观生物学尺度上的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验