Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, 461 BaYi St, Nanchang, 330006, People's Republic of China.
School of Public Health and Management, Nanchang Medical College, Nanchang, People's Republic of China.
BMC Med Res Methodol. 2024 Mar 8;24(1):59. doi: 10.1186/s12874-024-02179-5.
The primary treatment for patients with myocardial infarction (MI) is percutaneous coronary intervention (PCI). Despite this, the incidence of major adverse cardiovascular events (MACEs) remains a significant concern. Our study seeks to optimize PCI predictive modeling by employing an ensemble learning approach to identify the most effective combination of predictive variables.
We conducted a retrospective, non-interventional analysis of MI patient data from 2018 to 2021, focusing on those who underwent PCI. Our principal metric was the occurrence of 1-year postoperative MACEs. Variable selection was performed using lasso regression, and predictive models were developed using the Super Learner (SL) algorithm. Model performance was appraised by the area under the receiver operating characteristic curve (AUC) and the average precision (AP) score. Our cohort included 3,880 PCI patients, with 475 (12.2%) experiencing MACEs within one year. The SL model exhibited superior discriminative performance, achieving a validated AUC of 0.982 and an AP of 0.971, which markedly surpassed the traditional logistic regression models (AUC: 0.826, AP: 0.626) in the test cohort. Thirteen variables were significantly associated with the occurrence of 1-year MACEs.
Implementing the Super Learner algorithm has substantially enhanced the predictive accuracy for the risk of MACEs in MI patients. This advancement presents a promising tool for clinicians to craft individualized, data-driven interventions to better patient outcomes.
心肌梗死(MI)患者的主要治疗方法是经皮冠状动脉介入治疗(PCI)。尽管如此,主要不良心血管事件(MACE)的发生率仍然是一个重大关注点。我们的研究旨在通过采用集成学习方法来优化 PCI 预测模型,以确定预测变量的最有效组合。
我们对 2018 年至 2021 年期间接受 PCI 的 MI 患者数据进行了回顾性、非干预性分析。我们的主要指标是术后 1 年发生 MACE 的情况。使用套索回归进行变量选择,使用 Super Learner(SL)算法开发预测模型。通过接收者操作特征曲线下面积(AUC)和平均精度(AP)评分评估模型性能。我们的队列包括 3880 名接受 PCI 的患者,其中 475 名(12.2%)在一年内发生 MACE。SL 模型表现出卓越的判别性能,验证 AUC 为 0.982,AP 为 0.971,在测试队列中明显优于传统的逻辑回归模型(AUC:0.826,AP:0.626)。13 个变量与 1 年 MACE 的发生显著相关。
实施 Super Learner 算法大大提高了 MI 患者发生 MACE 风险的预测准确性。这一进展为临床医生提供了一种有前途的工具,可以制定个性化、数据驱动的干预措施,以改善患者的预后。