Suppr超能文献

冠状动脉介入治疗后肾脏并发症机器学习模型的预测性能:一项系统评价和荟萃分析。

Predictive performance of machine learning models for kidney complications following coronary interventions: a systematic review and meta-analysis.

作者信息

Najdaghi Soroush, Davani Delaram Narimani, Shafie Davood, Alizadehasl Azin

机构信息

Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Science, Isfahan, Iran.

Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, 995614331, Iran.

出版信息

Int Urol Nephrol. 2025 Mar;57(3):855-874. doi: 10.1007/s11255-024-04257-5. Epub 2024 Oct 31.

Abstract

BACKGROUND

Acute kidney injury (AKI) and contrast-induced nephropathy (CIN) are common complications following percutaneous coronary intervention (PCI) or coronary angiography (CAG), presenting significant clinical challenges. Machine learning (ML) models offer promise for improving patient outcomes through early detection and intervention strategies.

METHODS

A comprehensive literature search following PRISMA guidelines was conducted in PubMed, Scopus, and Embase from inception to June 11, 2024. Study characteristics, ML models, performance metrics (AUC, accuracy, sensitivity, specificity, precision), and risk-of-bias assessment using the PROBAST tool were extracted. Statistical analysis used a random-effects model to pool AUC values, with heterogeneity assessed via the I statistic.

RESULTS

From 431 initial studies, 14 met the inclusion criteria. Gradient Boosting Machine (GBM) and Support Vector Machine (SVM) models showed the highest pooled AUCs of 0.87 (95% CI: 0.82-0.92) and 0.85 (95% CI: 0.80-0.90), respectively, with low heterogeneity (I < 30%). Random Forest (RF) had a similar AUC of 0.85 (95% CI: 0.78-0.92) but significant heterogeneity (I > 90%). Multilayer perceptron (MLP) and XGBoost models had moderate pooled AUCs of 0.79 (95% CI: 0.74-0.84) with high heterogeneity. RF showed strong accuracy (0.83, 95% CI: 0.70-0.96), while SVM had balanced sensitivity (0.69, 95% CI: 0.63-0.75) and specificity (0.73, 95% CI: 0.60-0.86). Age, serum creatinine, left ventricular ejection fraction, and hemoglobin consistently influenced model efficacy.

CONCLUSIONS

GBM and SVM models, with robust AUCs and low heterogeneity, are effective in predicting AKI and CIN post-PCI/CAG. RF, MLP, and XGBoost, despite competitive AUCs, showed considerable heterogeneity, emphasizing the need for further validation.

摘要

背景

急性肾损伤(AKI)和造影剂肾病(CIN)是经皮冠状动脉介入治疗(PCI)或冠状动脉造影(CAG)后的常见并发症,带来了重大的临床挑战。机器学习(ML)模型有望通过早期检测和干预策略改善患者预后。

方法

按照PRISMA指南,于2024年6月11日前在PubMed、Scopus和Embase数据库进行全面文献检索。提取研究特征、ML模型、性能指标(AUC、准确率、灵敏度、特异性、精确率),并使用PROBAST工具进行偏倚风险评估。统计分析采用随机效应模型汇总AUC值,通过I统计量评估异质性。

结果

在431项初始研究中,14项符合纳入标准。梯度提升机(GBM)和支持向量机(SVM)模型的汇总AUC最高,分别为0.87(95%CI:0.82 - 0.92)和0.85(95%CI:0.80 - 0.90),异质性较低(I<30%)。随机森林(RF)的AUC为0.85(95%CI:0.78 - 0.92),但异质性显著(I>90%)。多层感知器(MLP)和XGBoost模型的汇总AUC中等,为0.79(95%CI:0.74 - 0.84),异质性较高。RF显示出较高的准确率(0.83,95%CI:0.70 - 0.96),而SVM的灵敏度(0.69,95%CI:0.63 - 0.75)和特异性(0.73,95%CI:0.60 - 0.86)较为平衡。年龄、血清肌酐、左心室射血分数和血红蛋白始终会影响模型效果。

结论

GBM和SVM模型具有强大的AUC且异质性低,在预测PCI/CAG术后的AKI和CIN方面有效。RF、MLP和XGBoost尽管AUC具有竞争力,但显示出相当大的异质性,强调需要进一步验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验