Kang Seok Hun, Lee Gil Yong, Lim Joonwon, Kim Sang Ouk
National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, KAIST, Daejeon 34141, Republic of Korea.
Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
ACS Omega. 2021 Jul 26;6(30):19578-19585. doi: 10.1021/acsomega.1c02091. eCollection 2021 Aug 3.
We demonstrate a flexible and stretchable supercapacitor assembled via straightforward interfacial gelation of reduced graphene oxide (rGO) with carbon nanotube (CNT) on a stretchable fabric surface. The difference between the redox potential of aqueous graphene oxide (GO) dispersion, prepared using a modified Hummers' method, and of a solid Zn plate, which was used as an external stimulus, induces a spontaneous reduction of GO flakes forming porous CNT-rGO hydrogel at the liquid-solid interface. With the aid of Zn, a macroporous and flexible CNT-rGO hydrogel was fabricated on a stretchable fabric platform using a facile fabrication method, and the CNT-rGO fabric composite was assembled into a supercapacitor to demonstrate its feasibility as a wearable electrode. The porous structure of the as-formed CNT-rGO fabric composite allows excellent electrolyte accessibility and ion transport that result in a fast charge/discharge rate up to 100 mV/s and a large areal capacity of 10.13 mF/cm at a discharge rate of 0.5 mA (0.1 mA/cm). The inclusion of one-dimensional CNT as conductive bridges allows an excellent capacity retention of 95.2% after complete folding of the electrode and a capacity retention of 93.3% after 1000 bending cycles. Additional stretching test displayed a high capacity retention of 90.0% even at an applied strain as high as 50%, overcoming previous limitations of brittle graphene-based electrodes. This low-cost, lightweight, easy to synthesize, stretchable supercapacitor holds promise for next-generation wearable electronics and energy storage applications.
我们展示了一种通过还原氧化石墨烯(rGO)与碳纳米管(CNT)在可拉伸织物表面直接界面凝胶化组装而成的柔性可拉伸超级电容器。使用改进的Hummers法制备的水性氧化石墨烯(GO)分散体与用作外部刺激的固体锌板之间的氧化还原电位差异,促使GO薄片在液固界面处自发还原,形成多孔的CNT-rGO水凝胶。借助锌,采用简便的制备方法在可拉伸织物平台上制备了大孔且柔性的CNT-rGO水凝胶,并将CNT-rGO织物复合材料组装成超级电容器,以证明其作为可穿戴电极的可行性。所形成的CNT-rGO织物复合材料的多孔结构具有出色的电解质可及性和离子传输性能,在0.5 mA(0.1 mA/cm)的放电速率下,可实现高达100 mV/s的快速充放电速率和10.13 mF/cm的大面电容。一维CNT作为导电桥的加入,使电极在完全折叠后具有95.2%的出色容量保持率,在1000次弯曲循环后容量保持率为93.3%。额外的拉伸测试表明,即使在高达50%的外加应变下,仍具有90.0%的高容量保持率,克服了以往基于石墨烯的脆性电极的局限性。这种低成本、轻质、易于合成的可拉伸超级电容器在下一代可穿戴电子设备和能量存储应用中具有广阔前景。